https://www.fi.edu/case-files/coolidge-cathode-rays
https://www.nature.com/articles/nsb1001-831
Polymer Characterization
A. Momose, in Polymer Science: A Comprehensive Reference, 2012
2.22.3 Micro X-Ray CT with Microfocus X-Ray Generator
In general, an X-ray generator consists of a metal target (anode), an electron gun
(cathode), a vacuum chamber with an X-ray window, and a power
supply/controller. X-rays are generated by the electrons accelerated
from the cathode and impinging on the target. The X-ray source size is
almost the same as that of the electron beam.
https://www.sciencedirect.com/topics/medicine-and-dentistry/x-ray-generator
The
grid is a radiotransparent plate composed of a radiopaque material
aligned perpendicular to the beam such that only those X-rays traveling
in the intended direction can reach the image intensifier, thus
minimizing ‘Compton-scatter fog’ by only allowing those X-rays with the
intended angle of incidence or very close to the intended beam angle of
incidence to strike the image intensifier. However, it also prevents
some useful photons from contributing to the image. For this reason,
while a grid reduces Compton scatter it also necessitates a higher mA
setting, thereby increasing the exposure to the subject.1
https://www.sciencedirect.com/topics/medicine-and-dentistry/x-ray-generator
LEAD | Properties and Determination
A.R. Flegal, G.M. Scelfo, in Encyclopedia of Food Sciences and Nutrition (Second Edition), 2003
X-ray Fluorescence
A
rapidly evolving methodology for measuring lead concentrations in situ
is with X-ray fluorescence (XRF). Sufficient incident radiation from an
X-ray generator or a radioactive source is provided to excite an inner
shell electron, with the resultant emission of a fluorescent X-ray. The
emitted energy is characteristic of the element that absorbed the
original X-ray, and the amount of energy released is proportional to the
mass of element present.
Two types of XRF are applicable for
noninvasive analyses of lead concentrations. L-line techniques require
10.5 keV to remove an L-shell electron, and K-line techniques require 88
keV to remove a K-shell electron. These XRF techniques are most
appropriate for analyses of bone lead concentrations of individuals.
This is significant because bone is the major reservoir of lead in
humans and accounts for > 90% of their total lead content.
https://www.sciencedirect.com/topics/medicine-and-dentistry/x-ray-generator
The
stage related to the particle acceleration in low pressure CS process
is considered to consist of three subsequent processes:•
gas and powder mixing;•
acceleration of the particles within the divergent section of the spray nozzle;•
particle movement within the free jet area (before and after contact with the substrate).
https://www.sciencedirect.com/topics/chemistry/particle-acceleration
Blog Archive
- Apr 12 (12)
- Apr 13 (2)
- Apr 14 (7)
- Apr 15 (11)
- Apr 16 (5)
- Apr 17 (14)
- Apr 18 (16)
- Apr 19 (17)
- Apr 20 (28)
- Apr 21 (29)
- Apr 22 (15)
- Apr 23 (19)
- Apr 24 (8)
- Apr 25 (58)
- Apr 26 (44)
- Apr 28 (6)
- Apr 29 (6)
- Apr 30 (7)
- May 01 (8)
- May 02 (9)
- May 03 (4)
- May 04 (6)
- May 05 (14)
- May 06 (20)
- May 07 (11)
- May 08 (18)
- May 09 (6)
- May 10 (17)
- May 11 (8)
- May 12 (25)
- May 13 (8)
- May 14 (2)
- May 15 (2)
- May 17 (16)
- May 18 (1)
- May 19 (5)
- May 20 (22)
- May 21 (6)
- May 22 (3)
- May 23 (2)
- May 24 (7)
- May 25 (1)
- May 26 (6)
- May 27 (3)
- May 28 (3)
- May 29 (10)
- May 30 (8)
- May 31 (12)
- Jun 01 (1)
- Jun 02 (1)
- Jun 03 (9)
- Jun 04 (1)
- Jun 05 (2)
- Jun 07 (4)
- Jun 08 (8)
- Jun 09 (1)
- Jun 10 (1)
- Jun 19 (1)
- Jun 27 (1)
- Jun 29 (1)
- Jun 30 (7)
- Jul 01 (3)
- Jul 02 (1)
- Jul 03 (1)
- Jul 04 (2)
- Jul 05 (1)
- Jul 06 (3)
- Jul 08 (9)
- Jul 09 (1)
- Jul 10 (1)
- Jul 11 (2)
- Jul 12 (2)
- Jul 13 (4)
- Jul 14 (4)
- Jul 15 (2)
- Jul 17 (8)
- Jul 18 (17)
- Jul 19 (1)
- Jul 20 (8)
- Jul 21 (6)
- Jul 22 (12)
- Jul 23 (10)
- Jul 25 (6)
- Jul 26 (23)
- Jul 28 (50)
- Jul 30 (12)
- Jul 31 (5)
- Aug 01 (16)
- Aug 02 (5)
- Aug 03 (5)
- Aug 04 (11)
- Aug 05 (13)
- Aug 06 (7)
- Aug 07 (10)
- Aug 08 (2)
- Aug 09 (27)
- Aug 10 (15)
- Aug 11 (67)
- Aug 12 (44)
- Aug 13 (29)
- Aug 14 (120)
- Aug 15 (61)
- Aug 16 (36)
- Aug 17 (21)
- Aug 18 (5)
- Aug 21 (5)
- Aug 22 (54)
- Aug 23 (101)
- Aug 24 (100)
- Aug 25 (99)
- Aug 26 (100)
- Aug 27 (84)
- Aug 28 (73)
- Aug 29 (76)
- Aug 30 (67)
- Aug 31 (95)
- Sep 01 (126)
- Sep 02 (68)
- Sep 03 (11)
- Sep 04 (14)
- Sep 05 (47)
- Sep 06 (101)
- Sep 07 (61)
- Sep 08 (57)
- Sep 09 (46)
- Sep 10 (14)
- Sep 11 (93)
- Sep 12 (101)
- Sep 13 (101)
- Sep 14 (100)
- Sep 15 (77)
- Sep 16 (2)
- Sep 17 (101)
- Sep 18 (91)
- Sep 19 (102)
- Sep 20 (102)
- Sep 21 (94)
- Sep 22 (84)
- Sep 23 (110)
- Sep 24 (101)
- Sep 25 (76)
- Sep 26 (43)
- Sep 27 (87)
- Sep 28 (104)
- Sep 29 (92)
- Sep 30 (33)
- Oct 01 (58)
- Oct 02 (1)
- Oct 05 (8)
- Oct 06 (6)
- Oct 07 (4)
- Oct 08 (4)
- Oct 09 (1)
- Oct 10 (18)
- Oct 11 (8)
- Oct 12 (26)
- Oct 13 (6)
- Oct 14 (2)
- Oct 15 (4)
- Oct 16 (3)
- Oct 17 (4)
- Oct 18 (3)
- Oct 19 (11)
- Oct 20 (5)
- Oct 21 (7)
- Oct 22 (5)
- Oct 23 (8)
- Oct 24 (9)
- Oct 25 (14)
- Oct 26 (8)
- Oct 27 (13)
- Oct 28 (7)
- Oct 29 (7)
- Oct 30 (22)
- Oct 31 (13)
- Nov 01 (13)
- Nov 02 (6)
- Nov 03 (10)
- Nov 04 (17)
- Nov 05 (8)
- Nov 06 (9)
- Nov 07 (11)
- Nov 08 (3)
- Nov 09 (7)
- Nov 10 (5)
- Nov 11 (5)
- Nov 12 (5)
- Nov 13 (10)
- Nov 14 (7)
- Nov 15 (15)
- Nov 16 (8)
- Nov 17 (6)
- Nov 18 (5)
- Nov 19 (7)
- Nov 20 (8)
- Nov 21 (12)
- Nov 22 (5)
- Nov 23 (7)
- Nov 24 (7)
- Nov 25 (8)
- Nov 26 (2)
- Nov 27 (12)
- Nov 28 (2)
- Nov 29 (2)
- Dec 01 (1)
- Dec 02 (3)
- Dec 03 (2)
- Dec 04 (1)
- Dec 05 (9)
- Dec 06 (22)
- Dec 07 (2)
- Dec 08 (3)
- Dec 09 (1)
- Dec 13 (2)
- Dec 14 (12)
- Dec 15 (1)
- Dec 17 (1)
- Dec 23 (4)
- Dec 24 (2)
- Dec 25 (1)
- Dec 27 (2)
- Dec 28 (1)
- Dec 29 (6)
- Dec 30 (2)
- Dec 31 (6)
- Jan 03 (3)
- Jan 04 (12)
- Jan 05 (5)
- Jan 06 (7)
- Jan 07 (1)
- Jan 08 (3)
- Jan 09 (1)
- Jan 11 (1)
- Jan 12 (5)
- Jan 14 (1)
- Jan 16 (1)
- Jan 17 (1)
- Jan 18 (2)
- Jan 23 (1)
- Jan 26 (3)
- Jan 28 (2)
- Jan 29 (3)
- Jan 30 (1)
- Jan 31 (1)
- Feb 04 (2)
- Feb 05 (2)
- Feb 08 (2)
- Feb 09 (1)
- Feb 13 (3)
- Feb 15 (2)
- Feb 16 (1)
- Feb 17 (1)
- Feb 25 (2)
- Feb 28 (2)
- Mar 03 (1)
- Mar 08 (3)
- Mar 16 (2)
- Mar 17 (1)
- Mar 18 (11)
- Mar 20 (9)
- Mar 22 (1)
- Mar 23 (3)
- Mar 31 (1)
- Apr 01 (2)
- Apr 02 (1)
- Apr 03 (2)
- Apr 04 (1)
- Apr 05 (2)
- Apr 06 (6)
- Apr 07 (1)
- Apr 08 (7)
- Apr 09 (4)
- Apr 10 (7)
- Apr 19 (18)
- Apr 20 (12)
- Apr 21 (1)
- Apr 24 (2)
- May 11 (1)
- May 16 (4)
- May 20 (2)
- May 24 (2)
- May 27 (3)
- Jun 02 (2)
- Jun 06 (1)
- Jun 07 (9)
- Jun 10 (1)
- Jun 11 (2)
- Jun 12 (3)
- Jun 15 (1)
- Jun 17 (1)
- Jun 20 (5)
- Jun 21 (12)
- Jun 22 (21)
- Jun 23 (10)
- Jun 24 (4)
- Jun 25 (10)
- Jun 26 (5)
- Jun 28 (4)
- Jun 29 (2)
- Jun 30 (2)
- Jul 01 (1)
- Jul 04 (1)
- Jul 05 (2)
- Jul 06 (1)
- Jul 07 (2)
- Jul 08 (1)
- Jul 09 (3)
- Jul 10 (6)
- Jul 11 (7)
- Jul 12 (2)
- Jul 13 (3)
- Jul 14 (7)
- Jul 15 (4)
- Jul 16 (9)
- Jul 17 (2)
- Jul 18 (6)
- Jul 19 (6)
- Jul 20 (14)
- Jul 21 (2)
- Jul 22 (6)
- Jul 23 (14)
- Jul 24 (6)
- Jul 25 (5)
- Jul 26 (5)
- Jul 27 (2)
- Jul 28 (6)
- Jul 29 (1)
- Jul 30 (3)
- Jul 31 (1)
- Aug 01 (6)
- Aug 03 (6)
- Aug 04 (4)
- Aug 05 (2)
- Aug 06 (2)
- Aug 07 (1)
- Aug 08 (1)
- Aug 09 (1)
- Aug 10 (1)
- Aug 11 (3)
- Aug 12 (1)
- Aug 13 (1)
- Aug 14 (1)
- Aug 15 (1)
- Aug 17 (9)
- Aug 19 (1)
- Aug 24 (1)
- Aug 28 (1)
- Oct 14 (1)
- Oct 22 (1)
- Nov 13 (10)
- Nov 14 (1)
- Nov 15 (3)
- Nov 23 (2)
- Nov 24 (1)
- Nov 25 (1)
- Nov 26 (1)
- Dec 01 (3)
- Dec 07 (3)
- Dec 08 (1)
- Dec 10 (2)
- Dec 12 (22)
- Dec 13 (30)
- Dec 15 (7)
- Dec 20 (5)
- Dec 28 (1)
- Dec 29 (3)
- Dec 31 (1)
- Jan 02 (2)
- Jan 10 (1)
- Jan 14 (1)
- Jan 17 (4)
- Jan 29 (2)
- Feb 03 (1)
- Feb 04 (6)
- Feb 05 (5)
- Feb 06 (10)
- Feb 08 (16)
- Feb 10 (63)
- Feb 11 (39)
- Feb 12 (33)
- Feb 13 (27)
- Feb 14 (4)
- Feb 15 (66)
- Feb 16 (7)
- Feb 17 (22)
- Feb 18 (14)
- Feb 19 (44)
- Feb 20 (3)
- Feb 21 (12)
- Feb 22 (68)
- Feb 23 (78)
- Feb 25 (3)
- Feb 26 (10)
- Feb 27 (28)
- Feb 28 (26)
- Mar 01 (17)
- Mar 02 (7)
- Mar 03 (6)
- Mar 04 (3)
- Mar 05 (7)
- Mar 06 (8)
- Mar 07 (13)
- Mar 08 (6)
- Mar 09 (3)
- Mar 10 (2)
- Mar 11 (15)
- Mar 12 (6)
- Mar 13 (2)
- Mar 14 (15)
- Mar 15 (10)
- Mar 16 (6)
- Mar 17 (5)
- Mar 18 (3)
- Mar 19 (3)
- Mar 20 (9)
- Mar 21 (2)
- Mar 22 (1)
- Mar 23 (15)
- Mar 24 (1)
- Mar 25 (1)
- Mar 26 (7)
- Mar 27 (5)
- Mar 28 (2)
- Mar 29 (8)
- Mar 30 (21)
- Mar 31 (10)
- Apr 01 (3)
- Apr 02 (3)
- Apr 03 (9)
- Apr 04 (1)
- Apr 05 (4)
- Apr 06 (4)
- Apr 07 (4)
- Apr 08 (4)
- Apr 09 (1)
- Apr 10 (1)
- Apr 11 (6)
- Apr 12 (7)
- Apr 13 (3)
- Apr 14 (2)
- Apr 15 (11)
- Apr 16 (16)
- Apr 17 (12)
- Apr 18 (29)
- Apr 19 (21)
- Apr 20 (3)
- Apr 21 (8)
- Apr 22 (3)
- Apr 23 (5)
- Apr 24 (1)
- Apr 25 (4)
- Apr 26 (6)
- Apr 27 (8)
- Apr 28 (10)
- Apr 30 (2)
- May 01 (7)
- May 02 (3)
- May 03 (16)
- May 04 (3)
- May 05 (11)
- May 06 (41)
- May 07 (2)
- May 08 (18)
- May 09 (117)
- May 10 (15)
- May 11 (85)
- May 12 (12)
- May 13 (54)
- May 14 (73)
- May 15 (85)
- May 16 (148)
- May 17 (101)
- May 18 (100)
- May 19 (99)
- May 20 (101)
- May 21 (101)
- May 22 (101)
- May 23 (101)
- May 24 (101)
- May 25 (7)
- May 27 (1)
- May 28 (1)
- May 29 (29)
- Jun 02 (1)
- Jun 03 (21)
- Jun 04 (7)
- Jun 05 (8)
- Jun 06 (1)
- Jun 22 (5)
- Jun 23 (10)
- Jun 24 (10)
- Jun 25 (4)
- Jun 26 (7)
- Jun 27 (22)
- Jun 28 (12)
- Jun 29 (11)
- Jun 30 (23)
- Jul 01 (10)
- Jul 02 (13)
- Jul 03 (17)
- Jul 04 (41)
- Jul 05 (17)
- Jul 06 (8)
- Jul 07 (10)
- Jul 08 (6)
- Jul 09 (3)
- Jul 10 (2)
- Jul 11 (2)
- Jul 12 (12)
- Jul 13 (6)
- Jul 14 (14)
- Jul 15 (5)
- Jul 17 (1)
- Jul 18 (1)
- Jul 19 (1)
- Jul 20 (1)
- Jul 22 (2)
- Jul 23 (30)
- Jul 24 (5)
- Jul 25 (55)
- Jul 27 (8)
- Jul 28 (26)
- Jul 29 (15)
- Jul 30 (35)
- Jul 31 (5)
- Aug 01 (13)
- Aug 02 (3)
- Aug 04 (1)
- Aug 05 (2)
- Aug 11 (11)
- Aug 13 (3)
- Aug 14 (7)
- Aug 15 (3)
- Aug 16 (5)
- Aug 17 (4)
- Aug 18 (4)
- Aug 19 (2)
- Aug 20 (19)
- Aug 21 (38)
- Aug 23 (14)
- Aug 24 (6)
- Aug 25 (30)
- Aug 26 (57)
- Aug 27 (19)
- Aug 28 (25)
- Aug 29 (120)
- Aug 30 (82)
- Aug 31 (46)
- Sep 01 (96)
- Sep 02 (101)
- Sep 03 (62)
- Sep 04 (32)
- Sep 05 (44)
- Sep 06 (91)
- Sep 07 (22)
- Sep 08 (100)
- Sep 09 (71)
- Sep 10 (15)
- Sep 11 (90)
- Sep 13 (2)
Monday, February 6, 2023
02-06-2023-1836 - A. Momose, in Polymer Science: A Comprehensive Reference, 2012
02-06-2023-1248 - Perspectives: A helping hand from the media (1901) [x ray cathode]
The world first discovered the sensational news that Wilhelm Röntgen’s mysterious X-rays could penetrate clothing and human skin, not through scientists but through the press.
Wilhelm Conrad Röntgen was a physicist who had little time for publicity. Like all other scientists the professor from Würzburg University in Franconia always sought recognition from his peers, but Röntgen rarely appeared at scientific conferences or wrote papers, let alone promoted his research findings outside of his field. All this changed after Röntgen’s accidental discovery of X-rays sparked a media storm that meant his findings would have an impact like no other before it.
On the evening of 8 November 1895, Röntgen was in his laboratory studying how cathode-ray tubes emit light. His attention was distracted by a glowing fluorescent screen that was too far from the tube to be affected by the cathode rays. Röntgen didn’t leave his lab for weeks as he tried to investigate the source of the glow. He discovered that the impact of cathode rays on the glass vacuum tube was generating a new kind of invisible ray. The rays had extraordinary penetrative power – they could travel long distances and make the screen glow, even when cardboard, wood, copper and aluminium were placed in the way – and could be recorded on photographic plates.
Röntgen knew immediately that he had to forego his natural reticence and disseminate this important discovery to the scientific community as soon as possible. Over Christmas, he wrote a 10-page article entitled “On a new kind of rays”, which was accepted by the Proceedings of the Würzburg Physical-Medical Society on 28 December. Röntgen named the discovery X-radiation, or X-rays, after the mathematical term ‘X’ that denotes something unknown. (He always preferred this term, even though other researchers insisted on calling it Röntgen rays.)
The article was precise and reserved in tone, with no accompanying images, and so the chances are that most scientists would have ignored the findings. A trip to the post office in Würzburg on New Years’ Day in 1896 changed all that. In Röntgen’s hands were 90 envelopes, each containing a reprint of the article, which were addressed to physicists all over Europe. Twelve of the envelopes, addressed to friends or to distinguished scientists like Lord Kelvin, also contained nine photographs. Röntgen made several photos mainly of the interiors of metal objects, but it was another photo that led to a situation in which “all hell broke loose,” as Röntgen would later complain.
Since X-rays could penetrate materials like metals and wood, it seemed natural to find out if they could penetrate flesh. What Röntgen discovered was a remarkable ability to see through flesh and make bones visible. As he described in his paper: “If the hand be held before the fluorescent screen, the shadow shows the bones darkly with only faint outlines of the surrounding tissues.” To illustrate this effect, Röntgen took an X-ray photograph of his wife’s hand, which produced an almost ghoulish image that clearly showed her bones and wedding ring.
One of the recipients of these letters was Franz Exner, a former fellow student of Röntgen and at the time professor of experimental physics in Vienna. Exner was a convivial man, regularly inviting members of the faculty to informal dinners at his home. Röntgen’s letter containing the photos arrived just in time for Exner to show his guests at one such gathering that upcoming Saturday, 4 January. One guest, Ernst Lecher, professor of physics in Prague, was so interested in the photos he asked Exner if he could borrow them for one day. Lecher was staying with his father in Vienna over the Christmas holidays, and knew he would be very interested in the images.
https://www.nobelprize.org/prizes/physics/1901/perspectives/
Away from such concerns, scientists rushed to replicate and refine Röntgen’s X-ray images. Scientists were free to create X-rays using cathode-ray tubes because Röntgen had deliberately not patented his discovery, convinced that his inventions and discoveries belonged to the world at large.
https://www.nobelprize.org/prizes/physics/1901/perspectives/
02-06-2023-1246 - International Bureau of Weights and Measures
The International Bureau of Weights and Measures (French: Bureau international des poids et mesures, BIPM) is an intergovernmental organisation, through which its 59 member-states act together on measurement standards in four areas: chemistry, ionising radiation, physical metrology, and coordinated universal time. It is based in Saint-Cloud, Paris, France. The organisation has been referred to as IBWM (from its name in English) in older literature.
https://en.wikipedia.org/wiki/International_Bureau_of_Weights_and_Measures
02-06-2023-1246 - metric prefix
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or submultiple of the unit. All metric prefixes used today are decadic. Each prefix has a unique symbol that is prepended to any unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand: one kilogram is equal to one thousand grams. The prefix milli-, likewise, may be added to metre to indicate division by one thousand; one millimetre is equal to one thousandth of a metre.
Decimal multiplicative prefixes have been a feature of all forms of the metric system, with six of these dating back to the system's introduction in the 1790s. Metric prefixes have also been used with some non-metric units. The SI prefixes are metric prefixes that were standardised for use in the International System of Units (SI) by the International Bureau of Weights and Measures (BIPM) in resolutions dating from 1960 to 2022.[1][2] Since 2009, they have formed part of the ISO/IEC 80000 standard. They are also used in the Unified Code for Units of Measure (UCUM).
The BIPM specifies twenty-four prefixes for the International System of Units (SI).
Prefix | Base 10 | Decimal | Adoption [nb 1] | |
---|---|---|---|---|
Name | Symbol | |||
quetta | Q | 1030 | 1000000000000000000000000000000 | 2022[3] |
ronna | R | 1027 | 1000000000000000000000000000 | 2022 |
yotta | Y | 1024 | 1000000000000000000000000 | 1991 |
zetta | Z | 1021 | 1000000000000000000000 | 1991 |
exa | E | 1018 | 1000000000000000000 | 1975 |
peta | P | 1015 | 1000000000000000 | 1975 |
tera | T | 1012 | 1000000000000 | 1960 |
giga | G | 109 | 1000000000 | 1960 |
mega | M | 106 | 1000000 | 1873 |
kilo | k | 103 | 1000 | 1795 |
hecto | h | 102 | 100 | 1795 |
deca | da | 101 | 10 | 1795 |
100 | 1 | — | ||
deci | d | 10−1 | 0.1 | 1795 |
centi | c | 10−2 | 0.01 | 1795 |
milli | m | 10−3 | 0.001 | 1795 |
micro | μ | 10−6 | 0.000001 | 1873 |
nano | n | 10−9 | 0.000000001 | 1960 |
pico | p | 10−12 | 0.000000000001 | 1960 |
femto | f | 10−15 | 0.000000000000001 | 1964 |
atto | a | 10−18 | 0.000000000000000001 | 1964 |
zepto | z | 10−21 | 0.000000000000000000001 | 1991 |
yocto | y | 10−24 | 0.000000000000000000000001 | 1991 |
ronto | r | 10−27 | 0.000000000000000000000000001 | 2022 |
quecto | q | 10−30 | 0.000000000000000000000000000001 | 2022 |
|
https://en.wikipedia.org/wiki/Metric_prefix
02-06-2023-1244 - vascular tissue
Vascular tissue is a complex conducting tissue, formed of more than one cell type, found in vascular plants. The primary components of vascular tissue are the xylem and phloem. These two tissues transport fluid and nutrients internally. There are also two meristems associated with vascular tissue: the vascular cambium and the cork cambium. All the vascular tissues within a particular plant together constitute the vascular tissue system of that plant.
The cells in vascular tissue are typically long and slender. Since the xylem and phloem function in the conduction of water, minerals, and nutrients throughout the plant, it is not surprising that their form should be similar to pipes. The individual cells of phloem are connected end-to-end, just as the sections of a pipe might be. As the plant grows, new vascular tissue differentiates in the growing tips of the plant. The new tissue is aligned with existing vascular tissue, maintaining its connection throughout the plant. The vascular tissue in plants is arranged in long, discrete strands called vascular bundles. These bundles include both xylem and phloem, as well as supporting and protective cells. In stems and roots, the xylem typically lies closer to the interior of the stem with phloem towards the exterior of the stem. In the stems of some Asterales dicots, there may be phloem located inwardly from the xylem as well.
Between the xylem and phloem is a meristem called the vascular cambium. This tissue divides off cells that will become additional xylem and phloem. This growth increases the girth of the plant, rather than its length. As long as the vascular cambium continues to produce new cells, the plant will continue to grow more stout. In trees and other plants that develop wood, the vascular cambium allows the expansion of vascular tissue that produces woody growth. Because this growth ruptures the epidermis of the stem, woody plants also have a cork cambium that develops among the phloem. The cork cambium gives rise to thickened cork cells to protect the surface of the plant and reduce water loss. Both the production of wood and the production of cork are forms of secondary growth.
In leaves, the vascular bundles are located among the spongy mesophyll. The xylem is oriented toward the adaxial surface of the leaf (usually the upper side), and phloem is oriented toward the abaxial surface of the leaf. This is why aphids are typically found on the undersides of the leaves rather than on the top, since the phloem transports sugars manufactured by the plant and they are closer to the lower surface.[citation needed]
https://en.wikipedia.org/wiki/Vascular_tissue
02-06-2023-1031 - draft various continued...
https://en.wikipedia.org/wiki/Sepsis
https://en.wikipedia.org/wiki/Bacterial_adhesin
https://en.wikipedia.org/wiki/Connexin
https://en.wikipedia.org/wiki/Shear_stress
https://en.wikipedia.org/wiki/Pilus#Fimbriae
https://en.wikipedia.org/wiki/Biofilm
https://en.wikipedia.org/wiki/Shear_flow
https://en.wikipedia.org/wiki/Cephalopod?wprov=srpw1_1
https://en.wikipedia.org/wiki/Dry-powder_inhaler
https://en.wikipedia.org/wiki/Jet_injector
https://en.wikipedia.org/wiki/Bioadhesive
https://en.wikipedia.org/wiki/Transdermal_implant
https://en.wikipedia.org/wiki/Patient-controlled_analgesia
https://en.wikipedia.org/wiki/Nanocell
https://en.wikipedia.org/wiki/Anaesthetic_machine
https://en.wikipedia.org/wiki/Thin-film_drug_delivery
https://en.wikipedia.org/wiki/Peripherally_inserted_central_catheter
https://en.wikipedia.org/wiki/Intraosseous_infusion
https://en.wikipedia.org/wiki/Connexon
https://en.wikipedia.org/wiki/Phosphorylation
https://en.wikipedia.org/wiki/Plant_physiology
https://en.wikipedia.org/wiki/Plant_pathology
administration of oxygen, volatile anesthetic agents, and other breathing gases into the lungs using a tracheal tube
https://en.wikipedia.org/wiki/Catheter
https://en.wikipedia.org/wiki/Central_venous_catheter
https://en.wikipedia.org/wiki/Cannula
https://en.wikipedia.org/wiki/Fistula
https://en.wikipedia.org/wiki/Anesthesia
https://en.wikipedia.org/wiki/Anesthesia_awareness
https://en.wikipedia.org/wiki/Barbiturate
https://en.wikipedia.org/wiki/Suxamethonium_chloride
https://en.wikipedia.org/wiki/1,3-Bisphosphoglyceric_acid
https://en.wikipedia.org/wiki/Agranulocytosis
https://en.wikipedia.org/wiki/Granulocyte
https://en.wikipedia.org/wiki/Phagocyte
https://en.wikipedia.org/wiki/Dendritic_cell
https://en.wikipedia.org/wiki/White_blood_cell
https://en.wikipedia.org/wiki/Chemotaxis
https://en.wikipedia.org/wiki/Myelocyte
https://en.wikipedia.org/wiki/Promyelocyte
https://en.wikipedia.org/wiki/Cell_membrane
https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Pressure_gradient
https://en.wikipedia.org/wiki/Hydrostatics
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Magnetohydrodynamics
https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
https://en.wikipedia.org/wiki/Plasma_(physics)
https://en.wikipedia.org/wiki/Brine
https://en.wikipedia.org/wiki/Liquid_metal
https://en.wikipedia.org/wiki/Particle_acceleration
https://en.wikipedia.org/wiki/Decontamination
https://en.wikipedia.org/wiki/Dry_decontamination
https://en.wikipedia.org/wiki/Veterinary_medicine
https://en.wikipedia.org/wiki/Vacuum_cleaner
https://en.wikipedia.org/wiki/Cold_shock_response
https://en.wikipedia.org/wiki/Vasoconstriction
https://en.wikipedia.org/wiki/Inflammation
https://en.wikipedia.org/wiki/Pressure_vessel
https://en.wikipedia.org/wiki/Hyperbaric_medicine
https://en.wikipedia.org/wiki/Decompression_illness
https://en.wikipedia.org/wiki/Gas_gangrene
https://en.wikipedia.org/wiki/Diving_chamber#Hyperbaric_chamber
https://en.wikipedia.org/wiki/Air_embolism
https://en.wikipedia.org/wiki/Osteomyelitis
https://en.wikipedia.org/wiki/Necrotizing_fasciitis
https://en.wikipedia.org/wiki/Mucormycosis
https://en.wikipedia.org/wiki/Pneumothorax
https://en.wikipedia.org/wiki/Atelectasis
https://en.wikipedia.org/wiki/Pulmonary_surfactant
https://en.wikipedia.org/wiki/Surface_tension
https://en.wikipedia.org/wiki/Adhesion
https://en.wikipedia.org/wiki/Rheology
https://en.wikipedia.org/wiki/Circulatory_system
draft
circulatory line equipment
resp line substitution equipment
ns line equipment and mainframe computer or second etc.
respiratory substitution, neural substitution, circulatory substitution, reequilibration, calibration, pressures, reactions, matters, builds, tissues, salts, points, cells, decontamination, etc..
resp line equipment
artificial lung/rebuilds/clone brain component/etc. (computers, biological-system-r (cell, nested systems, etc.), signal generator/starters/medium/method, mirror/quality, receiver, human bio reactor, nuclear, nano/exponential ('negative marker'), scale, radioactive example, activation, quecto, observable universe, expansion amplification cascade, dark energy/etc., infinite, etc.)
pressure containment
nervous line relace (brain stem substitute; two units/etc.)
privacy euthanasia beheading cremation (one pair boots one person, build components, suppliers, time, space, persons, quantity, quality, etc.)
02-06-2023-0948 - Multiple organ dysfunction syndrome (MODS)
Multiple organ dysfunction syndrome (MODS) is altered organ function in an acutely ill patient requiring medical intervention to achieve homeostasis.
Although Irwin and Rippe cautioned in 2005 that the use of "multiple organ failure" or "multisystem organ failure" should be avoided,[1] both Harrison's (2015) and Cecil's (2012) medical textbooks still use the terms "multi-organ failure" and "multiple organ failure" in several chapters and do not use "multiple organ dysfunction syndrome" at all.
There are different stages of organ dysfunction for certain different organs, both in acute and in chronic onset, whether or not there are one or more organs affected. Each stage of dysfunction (whether it be the heart, lung, liver, or kidney) has defined parameters, in terms of laboratory values based on blood and other tests, as to what it is (each of these organs' levels of failure is divided into stage I, II, III, IV, and V). The word "failure" is commonly used to refer to the later stages, especially IV and V, when artificial support usually becomes necessary to sustain life; the damage may or may not be fully or partially reversible.
Cause
The condition results from infection, injury (accident, surgery), hypoperfusion and hypermetabolism. The primary cause triggers an uncontrolled inflammatory response.[citation needed]
Sepsis is the most common cause of multiple organ dysfunction syndrome and may result in septic shock. In the absence of infection, a sepsis-like disorder is termed systemic inflammatory response syndrome (SIRS). Both SIRS and sepsis could ultimately progress to multiple organ dysfunction syndrome. In one-third of the patients, however, no primary focus can be found.[1] Multiple organ dysfunction syndrome is well established as the final stage of a continuum: SIRS + infection → sepsis → severe sepsis → Multiple organ dysfunction syndrome.[citation needed]
Currently, investigators are looking into genetic targets for possible gene therapy to prevent the progression to multiple organ dysfunction syndrome. Some authors have conjectured that the inactivation of the transcription factors NF-κB and AP-1 would be appropriate targets in preventing sepsis and SIRS.[2] These two genes are pro-inflammatory. They are essential components of a normal healthy immune response, however, so there is risk of increasing vulnerability to infection, which can also cause clinical deterioration.[citation needed]
Pathophysiology
A definite explanation has not been found. Local and systemic responses are initiated by tissue damage. Respiratory failure is common in the first 72 hours. Subsequently, one might see liver failure (5–7 days), gastrointestinal bleeding (10–15 days) and kidney failure (11–17 days).[1]
Gut hypothesis
The most popular hypothesis by Deitch to explain MODS in critically ill patients is the gut hypothesis.[3] Due to splanchnic hypoperfusion and the subsequent mucosal ischaemia there are structural changes and alterations in cellular function. This results in increased gut permeability, changed immune function of the gut and increased translocation of bacteria. Liver dysfunction leads to toxins escaping into the systemic circulation and activating an immune response. This results in tissue injury and organ dysfunction.[1]
Endotoxin macrophage hypothesis
Gram-negative infections in MODS patients are relatively common, hence endotoxins have been advanced as principal mediator in this disorder. It is thought that following the initial event cytokines are produced and released. The pro-inflammatory mediators are: tumor necrosis factor-alpha (TNF-α), interleukin-1, interleukin-6, thromboxane A2, prostacyclin, platelet activating factor, and nitric oxide.[1]
Tissue hypoxia-microvascular hypothesis
As a result of macro- and microvascular changes insufficient supply of oxygen occurs. Hypoxemia causes cell death and organ dysfunction.[1]
Mitochondrial DNA hypothesis
According to findings of Professor Zsolt Balogh and his team at the University of Newcastle (Australia), mitochondrial DNA is the leading cause of severe inflammation due to a massive amount of mitochondrial DNA that leaks into the bloodstream due to cell death of patients who survived major trauma.[citation needed]
Mitochondrial DNA resembles bacterial DNA. If bacteria triggers leukocytes, mitochondrial DNA may do the same. When confronted with bacteria, white blood cells, or neutrophil granulocytes, behave like predatory spiders. They spit out a web, or net, to trap the invaders, then hit them with a deadly oxidative blast, forming neutrophil extracellular traps (NETs).[citation needed]
This results in catastrophic immune response leading to multiple organ dysfunction syndrome.[4][5]
Integrated hypothesis
Since in most cases no primary cause is found, the condition could be part of a compromised homeostasis involving the previous mechanisms.[1]
Diagnosis
The European Society of Intensive Care organized a consensus meeting in 1994 to create the "Sepsis-Related Organ Failure Assessment (SOFA)" score to describe and quantitate the degree of organ dysfunction in six organ systems. Using similar physiologic variables the Multiple Organ Dysfunction Score was developed.[1]
Four clinical phases have been suggested:[citation needed]
- Stage 1: the patient has increased volume requirements and mild respiratory alkalosis, which is accompanied by oliguria, hyperglycemia and increased insulin requirements.
- Stage 2: the patient is tachypneic, hypocapnic and hypoxemic; develops moderate liver dysfunction and possible hematologic abnormalities.
- Stage 3: the patient develops shock with azotemia and acid-base disturbances; has significant coagulation abnormalities.
- Stage 4: the patient is vasopressor dependent and oliguric or anuric; subsequently develops ischemic colitis and lactic acidosis.
Definition
Multiple dysfunction syndrome is the presence of altered organ function in acutely ill patients such that homeostasis cannot be maintained without intervention. It usually involves two or more organ systems. It calls for an immediate intervention.[1]
Management
At present, there is no drug or device that can reverse organ failure that has been judged by the health care team to be medically and/or surgically irreversible (organ function can recover, at least to a degree, in patients whose organs are very dysfunctional, where the patient has not died;[citation needed] and some organs, like the liver or the skin, can regenerate better than others),- with the possible exception of single or multiple organ transplants or the use of artificial organs or organ parts, in certain candidates in specific situations. Therapy, therefore, is usually mostly limited to supportive care, i.e. safeguarding hemodynamics, and respiration. Maintaining adequate tissue oxygenation is a principal target. Starting enteral nutrition within 36 hours of admission to an intensive care unit has reduced infectious complications.[1]
Prognosis
Mortality, though it has lessened to a limited degree, at least in developed countries with timely access to initial and tertiary care, varies where the chance of survival is diminished as the number of organs involved increases. Mortality in MODS from septic shock (which itself has a high mortality of 25-50%), and from multiple traumas, especially if not rapidly treated, appear to be especially severe. If more than one organ system is affected, the mortality rate is still higher, and this is especially the case when five or more systems or organs are affected. Old age is a risk factor in and of itself, and immunocompromised patients, such as with cancer or AIDS or a transplant, are at risk. Prognosis must take into account any co-morbidities the patient may have, their past and current health status, any genetic or environmental vulnerabilities they have, the nature and type of the illness or injury (as an example, data from COVID-19 is still being analyzed, whereas other cases from long-existing illnesses are much better understood), and any resistance to drugs used to treat microbial infections or any hospital-acquired co-infection. Earlier and aggressive treatment, the use of experimental treatments, or at least modern tools such as ventilators, ECMO, dialysis, bypass, and transplantation, especially at a trauma center, may improve outcomes in certain cases, but this depends in part on speedy and affordable access to high-quality care, which many areas lack. Measurements of lactate, cytokines, albumin and other proteins, urea, blood oxygen and carbon dioxide levels, insulin, and blood sugar, adequate hydration, constant monitoring of vital signs, good communication within and between facilities and staff, and adequate staffing, training, and charting are important in MODS, as in any serious illness.[6][7][8][9][10]
In patients with sepsis, septic shock, or multiple organ dysfunction syndrome that is due to major trauma, the rs1800625 polymorphism is a functional single nucleotide polymorphism, a part of the receptor for advanced glycation end products (RAGE) transmembrane receptor gene (of the immunoglobulin superfamily) and confers host susceptibility to sepsis and MODS in these patients.[11]
History
For many years, some patients were loosely classified as having sepsis or the sepsis syndrome. In more recent years, these concepts have been refined – so that there are specific definitions of sepsis – and two new concepts have been developed: the SIRS and MODS.[1]
https://en.wikipedia.org/wiki/Multiple_organ_dysfunction_syndrome
02-06-2023-0947 - marburg town (germany)
Marburg (German pronunciation: [ˈmaːɐ̯bʊʁk] or [ˈmaʁbʊʁk] (listen)) is a university town in the German federal state (Bundesland) of Hesse, capital of the Marburg-Biedenkopf district (Landkreis). The town area spreads along the valley of the river Lahn and has a population of approximately 76,000.
https://en.wikipedia.org/wiki/Marburg
https://en.wikipedia.org/wiki/Marburg_virus_disease
02-06-2023-0945 - Antiserum 1890
History
In 1890, Emil Behring and Kitasato Shibasaburō published their first paper on serum therapy.
Behring had pioneered the technique, using guinea pigs to produce serum.[2] Based on his observation that people who survived infection with the diphtheria bacterium never became infected again, he discovered that the body continually produces an antitoxin, which prevents survivors of infections from being infected again with the same agent.
It was necessary for Behring to immunize larger animals in order to produce enough serum to protect humans, because the amount of antiserum produced by guinea pigs was too little to be practical. Horses proved to be the best serum producer, as the serum of other large animals is not concentrated enough, and horses were not believed to carry any diseases that could be transferred to humans.
Due to the First World War, a large number of horses were needed for military purposes. It was difficult for Behring to find enough German horses for his serum facility. He chose to obtain horses from Eastern European countries, mostly Hungary and Poland. Because of Behring's limited financial resources, most horses he selected had been intended for slaughter; however, the usefulness of the animal to others had no influence on the production of serum. Serum horses were calm, well-mannered, and in good health. Age, breed, height, and color were irrelevant.[3]
https://en.wikipedia.org/wiki/Antiserum