A cascading failure is a process in a system of interconnected parts in which the failure of one or few parts can trigger the failure of other parts and so on. Such a failure may happen in many types of systems, including power transmission, computer networking, finance, transportation systems, organisms, the human body, and ecosystems.
Cascading failures may occur when one part of the system fails. When this happens, other parts must then compensate for the failed component. This in turn overloads these nodes, causing them to fail as well, prompting additional nodes to fail one after another.
Cascading structural failure[edit]
Certain load-bearing structures with discrete structural components can be subject to the "zipper effect", where the failure of a single structural member increases the load on adjacent members. In the case of the Hyatt Regency walkway collapse, a suspended walkway (which was already overstressed due to an error in construction) failed when a single vertical suspension rod failed, overloading the neighboring rods which failed sequentially (i.e. like a zipper). A bridge that can have such a failure is called fracture critical, and numerous bridge collapses have been caused by the failure of a single part. Properly designed structures use an adequate factor of safety and/or alternate load paths to prevent this type of mechanical cascade failure.[5]
Other examples[edit]
Biology[edit]
Biochemical cascades exist in biology, where a small reaction can have system-wide implications. One negative example is ischemic cascade, in which a small ischemic attack releases toxins which kill off far more cells than the initial damage, resulting in more toxins being released. Current research is to find a way to block this cascade in stroke patients to minimize the damage.
In the study of extinction, sometimes the extinction of one species will cause many other extinctions to happen. Such a species is known as a keystone species.
Electronics[edit]
Another example is the Cockcroft–Walton generator, which can also experience cascade failures wherein one failed diode can result in all the diodes failing in a fraction of a second.
Yet another example of this effect in a scientific experiment was the implosion in 2001 of several thousand fragile glass photomultiplier tubes used in the Super-Kamiokande experiment, where the shock wave caused by the failure of a single detector appears to have triggered the implosion of the other detectors in a chain reaction.
Interdependent cascading failures[edit]
Diverse infrastructures such as water supply, transportation, fuel and power stations are coupled together and depend on each other for functioning, see Fig. 1. Owing to this coupling, interdependent networks are extremely sensitive to random failures, and in particular to targeted attacks, such that a failure of a small fraction of nodes in one network can trigger an iterative cascade of failures in several interdependent networks.[12][13] Electrical blackouts frequently result from a cascade of failures between interdependent networks, and the problem has been dramatically exemplified by the several large-scale blackouts that have occurred in recent years. Blackouts are a fascinating demonstration of the important role played by the dependencies between networks. For example, the 2003 Italy blackout resulted in a widespread failure of the railway network, health care systems, and financial services and, in addition, severely influenced the telecommunication networks. The partial failure of the communication system in turn further impaired the electrical grid management system, thus producing a positive feedback on the power grid.[14] This example emphasizes how inter-dependence can significantly magnify the damage in an interacting network system. A framework to study the cascading failures between coupled networks based on percolation theory was developed recently.[15]The cascading failures can lead to abrupt collapse compare to percolation in a single network where the breakdown of the network is continuous, see Fig. 2. Cascading failures in spatially embedded systems have been shown to lead to extreme vulnerability.[16] For the dynamic process of cascading failures see ref.[17] A model for repairing failures in order to avoid cascading failures was developed by Di Muro et al.[18]
Furthermore, it was shown that such interdependent systems when embedded in space are extremely vulnerable to localized attacks or failures. Above a critical radius of damage, the failure may spread to the entire system.[19]
Cascading failures spreading of localized attacks on spatial multiplex networks with a community structure has been studied by Vaknin et al.[20] Universal features of cascading failures in interdependent networks have been reported Duan et al.[21] A method for mitigating cascading failures in networks using localized information has been developed by Smolyak et al.[22]
For a comprehensive review on cascading failures in complex networks see Valdez et al.[23]
Model for overload cascading failures[edit]
A model for cascading failures due to overload propagation is the Motter–Lai model.[24] The tempo-spatial propagation of such failures have been studied by Jichang Zhao et al.[25]
See also[edit]
- Blackouts
- Brittle system
- Butterfly effect
- Byzantine failure
- Cascading rollback
- Chain reaction
- Chaos theory
- Cache stampede
- Congestion collapse
- Domino effect
- For Want of a Nail (proverb)
- Network science
- Network theory
- Interdependent networks
- Kessler Syndrome
- Percolation theory
- Progressive collapse
- Virtuous circle and vicious circle
- Wicked problem
https://en.wikipedia.org/wiki/Cascading_failure
No comments:
Post a Comment