A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of states at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a transition.[1] An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types—deterministic finite-state machines and non-deterministic finite-state machines.[2] A deterministic finite-state machine can be constructed equivalent to any non-deterministic one.
The behavior of state machines can be observed in many devices in modern society that perform a predetermined sequence of actions depending on a sequence of events with which they are presented. Simple examples are: vending machines, which dispense products when the proper combination of coins is deposited; elevators, whose sequence of stops is determined by the floors requested by riders; traffic lights, which change sequence when cars are waiting; combination locks, which require the input of a sequence of numbers in the proper order.
The finite-state machine has less computational power than some other models of computation such as the Turing machine.[3] The computational power distinction means there are computational tasks that a Turing machine can do but an FSM cannot. This is because an FSM's memory is limited by the number of states it has. A finite-state machine has the same computational power as a Turing machine that is restricted such that its head may only perform "read" operations, and always has to move from left to right. FSMs are studied in the more general field of automata theory.
Example: coin-operated turnstile
An example of a simple mechanism that can be modeled by a state machine is a turnstile.[4][5] A turnstile, used to control access to subways and amusement park rides, is a gate with three rotating arms at waist height, one across the entryway. Initially the arms are locked, blocking the entry, preventing patrons from passing through. Depositing a coin or token in a slot on the turnstile unlocks the arms, allowing a single customer to push through. After the customer passes through, the arms are locked again until another coin is inserted.
Considered as a state machine, the turnstile has two possible states: Locked and Unlocked.[4] There are two possible inputs that affect its state: putting a coin in the slot (coin) and pushing the arm (push). In the locked state, pushing on the arm has no effect; no matter how many times the input push is given, it stays in the locked state. Putting a coin in – that is, giving the machine a coin input – shifts the state from Locked to Unlocked. In the unlocked state, putting additional coins in has no effect; that is, giving additional coin inputs does not change the state. However, a customer pushing through the arms, giving a push input, shifts the state back to Locked.
The turnstile state machine can be represented by a state-transition table, showing for each possible state, the transitions between them (based upon the inputs given to the machine) and the outputs resulting from each input:
Current State Input Next State Output Locked coin Unlocked Unlocks the turnstile so that the customer can push through. push Locked None Unlocked coin Unlocked None push Locked When the customer has pushed through, locks the turnstile.
The turnstile state machine can also be represented by a directed graph called a state diagram (above). Each state is represented by a node (circle). Edges (arrows) show the transitions from one state to another. Each arrow is labeled with the input that triggers that transition. An input that doesn't cause a change of state (such as a coin input in the Unlocked state) is represented by a circular arrow returning to the original state. The arrow into the Locked node from the black dot indicates it is the initial state.
Concepts and terminology
A state is a description of the status of a system that is waiting to execute a transition. A transition is a set of actions to be executed when a condition is fulfilled or when an event is received. For example, when using an audio system to listen to the radio (the system is in the "radio" state), receiving a "next" stimulus results in moving to the next station. When the system is in the "CD" state, the "next" stimulus results in moving to the next track. Identical stimuli trigger different actions depending on the current state.
In some finite-state machine representations, it is also possible to associate actions with a state:
- an entry action: performed when entering the state, and
- an exit action: performed when exiting the state.
Representations
State/Event table
Several state-transition table types are used. The most common representation is shown below: the combination of current state (e.g. B) and input (e.g. Y) shows the next state (e.g. C). The complete action's information is not directly described in the table and can only be added using footnotes.[further explanation needed] An FSM definition including the full action's information is possible using state tables (see also virtual finite-state machine).
Current state Input |
State A | State B | State C |
---|---|---|---|
Input X | ... | ... | ... |
Input Y | ... | State C | ... |
Input Z | ... | ... | ... |
UML state machines
The Unified Modeling Language has a notation for describing state machines. UML state machines overcome the limitations[citation needed] of traditional finite-state machines while retaining their main benefits. UML state machines introduce the new concepts of hierarchically nested states and orthogonal regions, while extending the notion of actions. UML state machines have the characteristics of both Mealy machines and Moore machines. They support actions that depend on both the state of the system and the triggering event, as in Mealy machines, as well as entry and exit actions, which are associated with states rather than transitions, as in Moore machines.[citation needed]
SDL state machines
The Specification and Description Language is a standard from ITU that includes graphical symbols to describe actions in the transition:
- send an event
- receive an event
- start a timer
- cancel a timer
- start another concurrent state machine
- decision
SDL embeds basic data types called "Abstract Data Types", an action language, and an execution semantic in order to make the finite-state machine executable.[citation needed]
Other state diagrams
There are a large number of variants to represent an FSM such as the one in figure 3.
Usage
In addition to their use in modeling reactive systems presented here, finite-state machines are significant in many different areas, including electrical engineering, linguistics, computer science, philosophy, biology, mathematics, video game programming, and logic. Finite-state machines are a class of automata studied in automata theory and the theory of computation. In computer science, finite-state machines are widely used in modeling of application behavior (control theory), design of hardware digital systems, software engineering, compilers, network protocols, and computational linguistics.
Classification
Finite-state machines can be subdivided into acceptors, classifiers, transducers and sequencers.[6]
Acceptors
Acceptors (also called detectors or recognizers) produce binary output, indicating whether or not the received input is accepted. Each state of an acceptor is either accepting or non accepting. Once all input has been received, if the current state is an accepting state, the input is accepted; otherwise it is rejected. As a rule, input is a sequence of symbols (characters); actions are not used. The start state can also be an accepting state, in which case the acceptor accepts the empty string. The example in figure 4 shows an acceptor that accepts the string "nice". In this acceptor, the only accepting state is state 7.
A (possibly infinite) set of symbol sequences, called a formal language, is a regular language if there is some acceptor that accepts exactly that set. For example, the set of binary strings with an even number of zeroes is a regular language (cf. Fig. 5), while the set of all strings whose length is a prime number is not.[7]: 18, 71
An acceptor could also be described as defining a language that would contain every string accepted by the acceptor but none of the rejected ones; that language is accepted by the acceptor. By definition, the languages accepted by acceptors are the regular languages.
The problem of determining the language accepted by a given acceptor is an instance of the algebraic path problem—itself a generalization of the shortest path problem to graphs with edges weighted by the elements of an (arbitrary) semiring.[8][9][jargon]
An example of an accepting state appears in Fig. 5: a deterministic finite automaton (DFA) that detects whether the binary input string contains an even number of 0s.
S1 (which is also the start state) indicates the state at which an even number of 0s has been input. S1 is therefore an accepting state. This acceptor will finish in an accept state, if the binary string contains an even number of 0s (including any binary string containing no 0s). Examples of strings accepted by this acceptor are ε (the empty string), 1, 11, 11..., 00, 010, 1010, 10110, etc.
Classifiers
Classifiers are a generalization of acceptors that produce n-ary output where n is strictly greater than two.[10]
Transducers
Transducers produce output based on a given input and/or a state using actions. They are used for control applications and in the field of computational linguistics.
In control applications, two types are distinguished:
- Moore machine
- The FSM uses only entry actions, i.e., output depends only on state. The advantage of the Moore model is a simplification of the behaviour. Consider an elevator door. The state machine recognizes two commands: "command_open" and "command_close", which trigger state changes. The entry action (E:) in state "Opening" starts a motor opening the door, the entry action in state "Closing" starts a motor in the other direction closing the door. States "Opened" and "Closed" stop the motor when fully opened or closed. They signal to the outside world (e.g., to other state machines) the situation: "door is open" or "door is closed".
- Mealy machine
- The FSM also uses input actions, i.e., output depends on input and state. The use of a Mealy FSM leads often to a reduction of the number of states. The example in figure 7 shows a Mealy FSM implementing the same behaviour as in the Moore example (the behaviour depends on the implemented FSM execution model and will work, e.g., for virtual FSM but not for event-driven FSM). There are two input actions (I:): "start motor to close the door if command_close arrives" and "start motor in the other direction to open the door if command_open arrives". The "opening" and "closing" intermediate states are not shown.
Sequencers
Sequencers (also called generators) are a subclass of acceptors and transducers that have a single-letter input alphabet. They produce only one sequence, which can be seen as an output sequence of acceptor or transducer outputs.[6]
Determinism
A further distinction is between deterministic (DFA) and non-deterministic (NFA, GNFA) automata. In a deterministic automaton, every state has exactly one transition for each possible input. In a non-deterministic automaton, an input can lead to one, more than one, or no transition for a given state. The powerset construction algorithm can transform any nondeterministic automaton into a (usually more complex) deterministic automaton with identical functionality.
A finite-state machine with only one state is called a "combinatorial FSM". It only allows actions upon transition into a state. This concept is useful in cases where a number of finite-state machines are required to work together, and when it is convenient to consider a purely combinatorial part as a form of FSM to suit the design tools.[11]
Alternative semantics
There are other sets of semantics available to represent state machines. For example, there are tools for modeling and designing logic for embedded controllers.[12] They combine hierarchical state machines (which usually have more than one current state), flow graphs, and truth tables into one language, resulting in a different formalism and set of semantics.[13] These charts, like Harel's original state machines,[14] support hierarchically nested states, orthogonal regions, state actions, and transition actions.[15]
Mathematical model
In accordance with the general classification, the following formal definitions are found.
A deterministic finite-state machine or deterministic finite-state acceptor is a quintuple , where:
- is the input alphabet (a finite non-empty set of symbols);
- is a finite non-empty set of states;
- is an initial state, an element of ;
- is the state-transition function: (in a nondeterministic finite automaton it would be , i.e. would return a set of states);
- is the set of final states, a (possibly empty) subset of .
For both deterministic and non-deterministic FSMs, it is conventional to allow to be a partial function, i.e. does not have to be defined for every combination of and . If an FSM is in a state , the next symbol is and is not defined, then can announce an error (i.e. reject the input). This is useful in definitions of general state machines, but less useful when transforming the machine. Some algorithms in their default form may require total functions.
A finite-state machine has the same computational power as a Turing machine that is restricted such that its head may only perform "read" operations, and always has to move from left to right. That is, each formal language accepted by a finite-state machine is accepted by such a kind of restricted Turing machine, and vice versa.[16]
A finite-state transducer is a sextuple , where:
- is the input alphabet (a finite non-empty set of symbols);
- is the output alphabet (a finite non-empty set of symbols);
- is a finite non-empty set of states;
- is the initial state, an element of ;
- is the state-transition function: ;
- is the output function.
If the output function depends on the state and input symbol () that definition corresponds to the Mealy model, and can be modelled as a Mealy machine. If the output function depends only on the state () that definition corresponds to the Moore model, and can be modelled as a Moore machine. A finite-state machine with no output function at all is known as a semiautomaton or transition system.
If we disregard the first output symbol of a Moore machine, , then it can be readily converted to an output-equivalent Mealy machine by setting the output function of every Mealy transition (i.e. labeling every edge) with the output symbol given of the destination Moore state. The converse transformation is less straightforward because a Mealy machine state may have different output labels on its incoming transitions (edges). Every such state needs to be split in multiple Moore machine states, one for every incident output symbol.[17]
Optimization
Optimizing an FSM means finding a machine with the minimum number of states that performs the same function. The fastest known algorithm doing this is the Hopcroft minimization algorithm.[18][19] Other techniques include using an implication table, or the Moore reduction procedure.[20] Additionally, acyclic FSAs can be minimized in linear time.[21]
Implementation
Hardware applications
In a digital circuit, an FSM may be built using a programmable logic device, a programmable logic controller, logic gates and flip flops or relays. More specifically, a hardware implementation requires a register to store state variables, a block of combinational logic that determines the state transition, and a second block of combinational logic that determines the output of an FSM. One of the classic hardware implementations is the Richards controller.
In a Medvedev machine, the output is directly connected to the state flip-flops minimizing the time delay between flip-flops and output.[22][23]
Through state encoding for low power state machines may be optimized to minimize power consumption.
Software applications
The following concepts are commonly used to build software applications with finite-state machines:
- Automata-based programming
- Event-driven finite-state machine
- Virtual finite-state machine
- State design pattern
Finite-state machines and compilers
Finite automata are often used in the frontend of programming language compilers. Such a frontend may comprise several finite-state machines that implement a lexical analyzer and a parser. Starting from a sequence of characters, the lexical analyzer builds a sequence of language tokens (such as reserved words, literals, and identifiers) from which the parser builds a syntax tree. The lexical analyzer and the parser handle the regular and context-free parts of the programming language's grammar.[24]
See also
- Abstract state machines
- Alternating finite automaton
- Communicating finite-state machine
- Control system
- Control table
- Decision tables
- DEVS
- Hidden Markov model
- Petri net
- Pushdown automaton
- Quantum finite automaton
- SCXML
- Semiautomaton
- Semigroup action
- Sequential logic
- State diagram
- Synchronizing word
- Transformation semigroup
- Transition system
- Tree automaton
- Turing machine
- UML state machine
References
Further reading
General
- Sakarovitch, Jacques (2009). Elements of automata theory. Translated from the French by Reuben Thomas. Cambridge University Press. ISBN 978-0-521-84425-3. Zbl 1188.68177.
- Wagner, F., "Modeling Software with Finite State Machines: A Practical Approach", Auerbach Publications, 2006, ISBN 0-8493-8086-3.
- ITU-T, Recommendation Z.100 Specification and Description Language (SDL)
- Samek, M., Practical Statecharts in C/C++, CMP Books, 2002, ISBN 1-57820-110-1.
- Samek, M., Practical UML Statecharts in C/C++, 2nd Edition, Newnes, 2008, ISBN 0-7506-8706-1.
- Gardner, T., Advanced State Management Archived 2008-11-19 at the Wayback Machine, 2007
- Cassandras, C., Lafortune, S., "Introduction to Discrete Event Systems". Kluwer, 1999, ISBN 0-7923-8609-4.
- Timothy Kam, Synthesis of Finite State Machines: Functional Optimization. Kluwer Academic Publishers, Boston 1997, ISBN 0-7923-9842-4
- Tiziano Villa, Synthesis of Finite State Machines: Logic Optimization. Kluwer Academic Publishers, Boston 1997, ISBN 0-7923-9892-0
- Carroll, J., Long, D., Theory of Finite Automata with an Introduction to Formal Languages. Prentice Hall, Englewood Cliffs, 1989.
- Kohavi, Z., Switching and Finite Automata Theory. McGraw-Hill, 1978.
- Gill, A., Introduction to the Theory of Finite-state Machines. McGraw-Hill, 1962.
- Ginsburg, S., An Introduction to Mathematical Machine Theory. Addison-Wesley, 1962.
Finite-state machines (automata theory) in theoretical computer science
- Arbib, Michael A. (1969). Theories of Abstract Automata (1st ed.). Englewood Cliffs, N.J.: Prentice-Hall, Inc. ISBN 978-0-13-913368-8.
- Bobrow, Leonard S.; Arbib, Michael A. (1974). Discrete Mathematics: Applied Algebra for Computer and Information Science (1st ed.). Philadelphia: W. B. Saunders Company, Inc. ISBN 978-0-7216-1768-8.
- Booth, Taylor L. (1967). Sequential Machines and Automata Theory (1st ed.). New York: John Wiley and Sons, Inc. Library of Congress Card Catalog Number 67-25924.
- Boolos, George; Jeffrey, Richard (1999) [1989]. Computability and Logic (3rd ed.). Cambridge, England: Cambridge University Press. ISBN 978-0-521-20402-6.
- Brookshear, J. Glenn (1989). Theory of Computation: Formal Languages, Automata, and Complexity. Redwood City, California: Benjamin/Cummings Publish Company, Inc. ISBN 978-0-8053-0143-4.
- Davis, Martin; Sigal, Ron; Weyuker, Elaine J. (1994). Computability, Complexity, and Languages and Logic: Fundamentals of Theoretical Computer Science (2nd ed.). San Diego: Academic Press, Harcourt, Brace & Company. ISBN 978-0-12-206382-4.
- Hopcroft, John; Ullman, Jeffrey (1979). Introduction to Automata Theory, Languages, and Computation (1st ed.). Reading Mass: Addison-Wesley. ISBN 978-0-201-02988-8.
- Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D. (2001). Introduction to Automata Theory, Languages, and Computation (2nd ed.). Reading Mass: Addison-Wesley. ISBN 978-0-201-44124-6.
- Hopkin, David; Moss, Barbara (1976). Automata. New York: Elsevier North-Holland. ISBN 978-0-444-00249-5.
- Kozen, Dexter C. (1997). Automata and Computability (1st ed.). New York: Springer-Verlag. ISBN 978-0-387-94907-9.
- Lewis, Harry R.; Papadimitriou, Christos H. (1998). Elements of the Theory of Computation (2nd ed.). Upper Saddle River, New Jersey: Prentice-Hall. ISBN 978-0-13-262478-7.
- Linz, Peter (2006). Formal Languages and Automata (4th ed.). Sudbury, MA: Jones and Bartlett. ISBN 978-0-7637-3798-6.
- Minsky, Marvin (1967). Computation: Finite and Infinite Machines (1st ed.). New Jersey: Prentice-Hall.
- Papadimitriou, Christos (1993). Computational Complexity (1st ed.). Addison Wesley. ISBN 978-0-201-53082-7.
- Pippenger, Nicholas (1997). Theories of Computability (1st ed.). Cambridge, England: Cambridge University Press. ISBN 978-0-521-55380-3.
- Rodger, Susan; Finley, Thomas (2006). JFLAP: An Interactive Formal Languages and Automata Package (1st ed.). Sudbury, MA: Jones and Bartlett. ISBN 978-0-7637-3834-1.
- Sipser, Michael (2006). Introduction to the Theory of Computation (2nd ed.). Boston Mass: Thomson Course Technology. ISBN 978-0-534-95097-2.
- Wood, Derick (1987). Theory of Computation (1st ed.). New York: Harper & Row, Publishers, Inc. ISBN 978-0-06-047208-5.
Abstract state machines in theoretical computer science
- Gurevich, Yuri (July 2000). "Sequential Abstract State Machines Capture Sequential Algorithms" (PDF). ACM Transactions on Computational Logic. 1 (1): 77–111. CiteSeerX 10.1.1.146.3017. doi:10.1145/343369.343384. S2CID 2031696.
Machine learning using finite-state algorithms
- Mitchell, Tom M. (1997). Machine Learning (1st ed.). New York: WCB/McGraw-Hill Corporation. ISBN 978-0-07-042807-2.
Hardware engineering: state minimization and synthesis of sequential circuits
- Booth, Taylor L. (1967). Sequential Machines and Automata Theory (1st ed.). New York: John Wiley and Sons, Inc. Library of Congress Card Catalog Number 67-25924.
- Booth, Taylor L. (1971). Digital Networks and Computer Systems (1st ed.). New York: John Wiley and Sons, Inc. ISBN 978-0-471-08840-0.
- McCluskey, E. J. (1965). Introduction to the Theory of Switching Circuits (1st ed.). New York: McGraw-Hill Book Company, Inc. Library of Congress Card Catalog Number 65-17394.
- Hill, Fredrick J.; Peterson, Gerald R. (1965). Introduction to the Theory of Switching Circuits (1st ed.). New York: McGraw-Hill Book Company. Library of Congress Card Catalog Number 65-17394.
Finite Markov chain processes
- "We may think of a Markov chain as a process that moves successively through a set of states s1, s2, …, sr. … if it is in state si it moves on to the next stop to state sj with probability pij. These probabilities can be exhibited in the form of a transition matrix" (Kemeny (1959), p. 384)
Finite Markov-chain processes are also known as subshifts of finite type.
- Booth, Taylor L. (1967). Sequential Machines and Automata Theory (1st ed.). New York: John Wiley and Sons, Inc. Library of Congress Card Catalog Number 67-25924.
- Kemeny, John G.; Mirkil, Hazleton; Snell, J. Laurie; Thompson, Gerald L. (1959). Finite Mathematical Structures (1st ed.). Englewood Cliffs, N.J.: Prentice-Hall, Inc. Library of Congress Card Catalog Number 59-12841. Chapter 6 "Finite Markov Chains".
External links
- Finite State Automata at Curlie
- Modeling a Simple AI behavior using a Finite State Machine Example of usage in Video Games
- Free On-Line Dictionary of Computing description of Finite-State Machines
- NIST Dictionary of Algorithms and Data Structures description of Finite-State Machines
- A brief overview of state machine types, comparing theoretical aspects of Mealy, Moore, Harel & UML state machines.
https://en.wikipedia.org/wiki/Finite-state_machine
Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science. The word automata comes from the Greek word αὐτόματος, which means "self-acting, self-willed, self-moving". An automaton (automata in plural) is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically. An automaton with a finite number of states is called a Finite Automaton (FA) or Finite-State Machine (FSM). The figure on the right illustrates a finite-state machine, which is a well-known type of automaton. This automaton consists of states (represented in the figure by circles) and transitions (represented by arrows). As the automaton sees a symbol of input, it makes a transition (or jump) to another state, according to its transition function, which takes the previous state and current input symbol as its arguments.
Automata theory is closely related to formal language theory. In this context, automata are used as finite representations of formal languages that may be infinite. Automata are often classified by the class of formal languages they can recognize, as in the Chomsky hierarchy, which describes a nesting relationship between major classes of automata. Automata play a major role in the theory of computation, compiler construction, artificial intelligence, parsing and formal verification.
History
The theory of abstract automata was developed in the mid-20th century in connection with finite automata.[1] Automata theory was initially considered a branch of mathematical systems theory, studying the behavior of discrete-parameter systems. Early work in automata theory differed from previous work on systems by using abstract algebra to describe information systems rather than differential calculus to describe material systems.[2] The theory of the finite-state transducer was developed under different names by different research communities.[3] The earlier concept of Turing machine was also included in the discipline along with new forms of infinite-state automata, such as pushdown automata.
1956 saw the publication of Automata Studies, which collected work by scientists including Claude Shannon, W. Ross Ashby, John von Neumann, Marvin Minsky, Edward F. Moore, and Stephen Cole Kleene.[4] With the publication of this volume, "automata theory emerged as a relatively autonomous discipline".[5] The book included Kleene's description of the set of regular events, or regular languages, and a relatively stable measure of complexity in Turing machine programs by Shannon.[6] In the same year, Noam Chomsky described the Chomsky hierarchy, a correspondence between automata and formal grammars,[7] and Ross Ashby published An Introduction to Cybernetics, an accessible textbook explaining automata and information using basic set theory.
The study of linear bounded automata led to the Myhill–Nerode theorem,[8] which gives a necessary and sufficient condition for a formal language to be regular, and an exact count of the number of states in a minimal machine for the language. The pumping lemma for regular languages, also useful in regularity proofs, was proven in this period by Michael O. Rabin and Dana Scott, along with the computational equivalence of deterministic and nondeterministic finite automata.[9]
In the 1960s, a body of algebraic results known as "structure theory" or "algebraic decomposition theory" emerged, which dealt with the realization of sequential machines from smaller machines by interconnection.[10] While any finite automaton can be simulated using a universal gate set, this requires that the simulating circuit contain loops of arbitrary complexity. Structure theory deals with the "loop-free" realizability of machines.[5] The theory of computational complexity also took shape in the 1960s.[11][12] By the end of the decade, automata theory came to be seen as "the pure mathematics of computer science".[5]
Automata
What follows is a general definition of an automaton, which restricts a broader definition of a system to one viewed as acting in discrete time-steps, with its state behavior and outputs defined at each step by unchanging functions of only its state and input.[5] 0'.'|01,"|",1|
Informal description
An automaton runs when it is given some sequence of inputs in discrete (individual) time steps (or just steps). An automaton processes one input picked from a set of symbols or letters, which is called an input alphabet. The symbols received by the automaton as input at any step are a sequence of symbols called words. An automaton has a set of states. At each moment during a run of the automaton, the automaton is in one of its states. When the automaton receives new input it moves to another state (or transitions) based on a transition function that takes the previous state and current input symbol as parameters. At the same time, another function called the output function produces symbols from the output alphabet, also according to the previous state and current input symbol. The automaton reads the symbols of the input word and transitions between states until the word is read completely, if it is finite in length, at which point the automaton halts. A state at which the automaton halts is called the final state.
To investigate the possible state/input/output sequences in an automaton using formal language theory, a machine can be assigned a starting state and a set of accepting states. Then, depending on whether a run starting from the starting state ends in an accepting state, the automaton can be said to accept or reject an input sequence. The set of all the words accepted by an automaton is called the language recognized by the automaton. A familiar example of a machine recognizing a language is an electronic lock, which accepts or rejects attempts to enter the correct code.
Formal definition
- Automaton
- An automaton can be represented formally by a 5-tuple , where:
- is a finite set of symbols, called the input alphabet of the automaton,
- is another finite set of symbols, called the output alphabet of the automaton,
- is a set of states,
- is the next-state function or transition function mapping state-input pairs to successor states,
- is the next-output function mapping state-input pairs to outputs.
- If is finite, then is a finite automaton.[5]
- Input word
- An automaton reads a finite string of symbols , where , which is called an input word. The set of all words is denoted by .
- Run
- A sequence of states , where such that for , is a run of the automaton on an input starting from state . In other words, at first the automaton is at the start state , and receives input . For and every following in the input string, the automaton picks the next state according to the transition function , until the last symbol has been read, leaving the machine in the final state of the run, . Similarly, at each step, the automaton emits an output symbol according to the output function .
- The transition function is extended inductively into to describe the machine's behavior when fed whole input words. For the empty string , for all states , and for strings where is the last symbol and is the (possibly empty) rest of the string, .[10] The output function may be extended similarly into , which gives the complete output of the machine when run on word from state .
- Acceptor
- In order to study an automaton with the theory of formal languages, an automaton may be considered as an acceptor, replacing the output alphabet and function and with
- , a designated start state, and
- , a set of states of (i.e. ) called accept states.
- This allows the following to be defined:
- Accepting word
- A word is an accepting word for the automaton if , that is, if after consuming the whole string the machine is in an accept state.
- Recognized language
- The language recognized by an automaton is the set of all the words that are accepted by the automaton, .[13]
- Recognizable languages
- The recognizable languages are the set of languages that are recognized by some automaton. For finite automata the recognizable languages are regular languages. For different types of automata, the recognizable languages are different.
Variant definitions of automata
Automata are defined to study useful machines under mathematical formalism. So the definition of an automaton is open to variations according to the "real world machine" that we want to model using the automaton. People have studied many variations of automata. The following are some popular variations in the definition of different components of automata.
- Input
- Finite input: An automaton that accepts only finite sequences of symbols. The above introductory definition only encompasses finite words.
- Infinite input: An automaton that accepts infinite words (ω-words). Such automata are called ω-automata.
- Tree input: The input may be a tree of symbols instead of sequence of symbols. In this case after reading each symbol, the automaton reads all the successor symbols in the input tree. It is said that the automaton makes one copy of itself for each successor and each such copy starts running on one of the successor symbols from the state according to the transition relation of the automaton. Such an automaton is called a tree automaton.
- Infinite tree input : The two extensions above can be combined, so the automaton reads a tree structure with (in)finite branches. Such an automaton is called an infinite tree automaton.
- States
- Single state: An automaton with one state, also called a combinational circuit, performs a transformation which may implement combinational logic.[10]
- Finite states: An automaton that contains only a finite number of states.
- Infinite states: An automaton that may not have a finite number of states, or even a countable number of states. Different kinds of abstract memory may be used to give such machines finite descriptions.
- Stack memory: An automaton may also contain some extra memory in the form of a stack in which symbols can be pushed and popped. This kind of automaton is called a pushdown automaton.
- Queue memory: An automaton may have memory in the form of a queue. Such a machine is called queue machine and is Turing-complete.
- Tape memory: The inputs and outputs of automata are often described as input and output tapes. Some machines have additional working tapes, including the Turing machine, linear bounded automaton, and log-space transducer.
- Transition function
- Deterministic: For a given current state and an input symbol, if an automaton can only jump to one and only one state then it is a deterministic automaton.
- Nondeterministic: An automaton that, after reading an input symbol, may jump into any of a number of states, as licensed by its transition relation. The term transition function is replaced by transition relation: The automaton non-deterministically decides to jump into one of the allowed choices. Such automata are called nondeterministic automata.
- Alternation: This idea is quite similar to tree automata but orthogonal. The automaton may run its multiple copies on the same next read symbol. Such automata are called alternating automata. The acceptance condition must be satisfied on all runs of such copies to accept the input.
- Acceptance condition
- Acceptance of finite words: Same as described in the informal definition above.
- Acceptance of infinite words: an ω-automaton cannot have final states, as infinite words never terminate. Rather, acceptance of the word is decided by looking at the infinite sequence of visited states during the run.
- Probabilistic acceptance: An automaton need not strictly accept or reject an input. It may accept the input with some probability between zero and one. For example, quantum finite automata, geometric automata and metric automata have probabilistic acceptance.
Different combinations of the above variations produce many classes of automata.
Automata theory is a subject matter that studies properties of various types of automata. For example, the following questions are studied about a given type of automata.
- Which class of formal languages is recognizable by some type of automata? (Recognizable languages)
- Are certain automata closed under union, intersection, or complementation of formal languages? (Closure properties)
- How expressive is a type of automata in terms of recognizing a class of formal languages? And, their relative expressive power? (Language hierarchy)
Automata theory also studies the existence or nonexistence of any effective algorithms to solve problems similar to the following list:
- Does an automaton accept at least one input word? (Emptiness checking)
- Is it possible to transform a given non-deterministic automaton into a deterministic automaton without changing the language recognized? (Determinization)
- For a given formal language, what is the smallest automaton that recognizes it? (Minimization)
Types of automata
The following is an incomplete list of types of automata.
Automaton | Recognizable languages |
---|---|
Nondeterministic/Deterministic finite-state machine (FSM) | regular languages |
Deterministic pushdown automaton (DPDA) | deterministic context-free languages |
Pushdown automaton (PDA) | context-free languages |
Linear bounded automaton (LBA) | context-sensitive languages |
Turing machine | recursively enumerable languages |
Deterministic Büchi automaton | ω-limit languages |
Nondeterministic Büchi automaton | ω-regular languages |
Rabin automaton, Streett automaton, Parity automaton, Muller automaton | |
Weighted automaton |
|
Discrete, continuous, and hybrid automata
Normally automata theory describes the states of abstract machines but there are discrete automata, analog automata or continuous automata, or hybrid discrete-continuous automata, which use digital data, analog data or continuous time, or digital and analog data, respectively.
Hierarchy in terms of powers
The following is an incomplete hierarchy in terms of powers of different types of virtual machines. The hierarchy reflects the nested categories of languages the machines are able to accept.[14]
Automaton |
---|
Deterministic Finite Automaton (DFA) -- Lowest Power (same power) (same power) |
Applications
Each model in automata theory plays important roles in several applied areas. Finite automata are used in text processing, compilers, and hardware design. Context-free grammar (CFGs) are used in programming languages and artificial intelligence. Originally, CFGs were used in the study of human languages. Cellular automata are used in the field of artificial life, the most famous example being John Conway's Game of Life. Some other examples which could be explained using automata theory in biology include mollusk and pine cone growth and pigmentation patterns. Going further, a theory suggesting that the whole universe is computed by some sort of a discrete automaton, is advocated by some scientists. The idea originated in the work of Konrad Zuse, and was popularized in America by Edward Fredkin. Automata also appear in the theory of finite fields: the set of irreducible polynomials that can be written as composition of degree two polynomials is in fact a regular language.[15] Another problem for which automata can be used is the induction of regular languages.
Automata simulators
Automata simulators are pedagogical tools used to teach, learn and research automata theory. An automata simulator takes as input the description of an automaton and then simulates its working for an arbitrary input string. The description of the automaton can be entered in several ways. An automaton can be defined in a symbolic language or its specification may be entered in a predesigned form or its transition diagram may be drawn by clicking and dragging the mouse. Well known automata simulators include Turing's World, JFLAP, VAS, TAGS and SimStudio.[16]
Connection to category theory
One can define several distinct categories of automata[17] following the automata classification into different types described in the previous section. The mathematical category of deterministic automata, sequential machines or sequential automata, and Turing machines with automata homomorphisms defining the arrows between automata is a Cartesian closed category,[18] it has both categorical limits and colimits. An automata homomorphism maps a quintuple of an automaton Ai onto the quintuple of another automaton Aj. Automata homomorphisms can also be considered as automata transformations or as semigroup homomorphisms, when the state space, S, of the automaton is defined as a semigroup Sg. Monoids are also considered as a suitable setting for automata in monoidal categories.[19][20][21]
- Categories of variable automata
One could also define a variable automaton, in the sense of Norbert Wiener in his book on The Human Use of Human Beings via the endomorphisms . Then one can show that such variable automata homomorphisms form a mathematical group. In the case of non-deterministic, or other complex kinds of automata, the latter set of endomorphisms may become, however, a variable automaton groupoid. Therefore, in the most general case, categories of variable automata of any kind are categories of groupoids or groupoid categories. Moreover, the category of reversible automata is then a 2-category, and also a subcategory of the 2-category of groupoids, or the groupoid category.
See also
References
- Meseguer, J., Montanari, U.: 1990 Petri nets are monoids. Information and Computation 88:105–155
Further reading
- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman (2000). Introduction to Automata Theory, Languages, and Computation (2nd ed.). Pearson Education. ISBN 978-0-201-44124-6.
- Michael Sipser (1997). Introduction to the Theory of Computation. PWS Publishing. ISBN 978-0-534-94728-6. Part One: Automata and Languages, chapters 1–2, pp. 29–122. Section 4.1: Decidable Languages, pp. 152–159. Section 5.1: Undecidable Problems from Language Theory, pp. 172–183.
- Elaine Rich (2008). Automata, Computability and Complexity: Theory and Applications. Pearson. ISBN 978-0-13-228806-4.
- Salomaa, Arto (1985). Computation and automata. Encyclopedia of Mathematics and Its Applications. Vol. 25. Cambridge University Press. ISBN 978-0-521-30245-6. Zbl 0565.68046.
- Anderson, James A. (2006). Automata theory with modern applications. With contributions by Tom Head. Cambridge: Cambridge University Press. ISBN 978-0-521-61324-8. Zbl 1127.68049.
- Conway, J.H. (1971). Regular algebra and finite machines. Chapman and Hall Mathematics Series. London: Chapman & Hall. Zbl 0231.94041.
- John M. Howie (1991) Automata and Languages, Clarendon Press ISBN 0-19-853424-8 MR1254435
- Sakarovitch, Jacques (2009). Elements of automata theory. Translated from the French by Reuben Thomas. Cambridge University Press. ISBN 978-0-521-84425-3. Zbl 1188.68177.
- James P. Schmeiser, David T. Barnard (1995). Producing a top-down parse order with bottom-up parsing. Elsevier North-Holland.
- Igor Aleksander, F.Keith Hanna (1975). Automata Theory : An Engineering Approach. New York: Crane Russak. ISBN 978-0-8448-0657-0.
- Marvin Minsky (1967). Computation : Finite and infinite machines. Princeton, N.J.: Prentice Hall.
- John C. Martin (2011). Introduction to Languages and The Theory of Computation. New York: McGraw Hill. ISBN 978-0-07-319146-1.
External links
https://en.wikipedia.org/wiki/Automata_theory
- Distributions (random variables)
- Stochastic processes / analysis
- Path integral
- Stochastic variational calculus
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Supersymmetric_theory_of_stochastic_dynamics
A torus, one of the most frequently studied objects in algebraic topologyhttps://en.wikipedia.org/wiki/Algebraic_topology
In the mathematical field of topology, a section (or cross section)[1] of a fiber bundle is a continuous right inverse of the projection function . In other words, if is a fiber bundle over a base space, :
then a section of that fiber bundle is a continuous map,
such that
- for all .
A section is an abstract characterization of what it means to be a graph. The graph of a function can be identified with a function taking its values in the Cartesian product , of and :
Let be the projection onto the first factor: . Then a graph is any function for which .
The language of fibre bundles allows this notion of a section to be generalized to the case when is not necessarily a Cartesian product. If is a fibre bundle, then a section is a choice of point in each of the fibres. The condition simply means that the section at a point must lie over . (See image.)
For example, when is a vector bundle a section of is an element of the vector space lying over each point . In particular, a vector field on a smooth manifold is a choice of tangent vector at each point of : this is a section of the tangent bundle of . Likewise, a 1-form on is a section of the cotangent bundle.
Sections, particularly of principal bundles and vector bundles, are also very important tools in differential geometry. In this setting, the base space is a smooth manifold , and is assumed to be a smooth fiber bundle over (i.e., is a smooth manifold and is a smooth map). In this case, one considers the space of smooth sections of over an open set , denoted . It is also useful in geometric analysis to consider spaces of sections with intermediate regularity (e.g., sections, or sections with regularity in the sense of Hölder conditions or Sobolev spaces).
https://en.wikipedia.org/wiki/Section_(fiber_bundle)
https://en.wikipedia.org/wiki/Sobolev_space
No comments:
Post a Comment