Blog Archive

Sunday, May 14, 2023

05-14-2023-1606 - transformer, synchronization AC, rectifier, mercury-arc valve, turbine, steam, induction motor, inductance, mercury vapor lamp, arc lamp, rotary converter, power inverter, etc. (draft)

https://en.wikipedia.org/wiki/Transformer

https://en.wikipedia.org/wiki/Synchronization_(alternating_current)

https://en.wikipedia.org/wiki/Rectifier

https://en.wikipedia.org/wiki/Mercury-arc_valve

https://en.wikipedia.org/wiki/Turbine

https://en.wikipedia.org/wiki/Steam

https://en.wikipedia.org/wiki/Induction_motor

https://en.wikipedia.org/wiki/Inductance

https://en.wikipedia.org/wiki/Mercury-vapor_lamp

https://en.wikipedia.org/wiki/Arc_lamp

https://en.wikipedia.org/wiki/Rotary_converter

https://en.wikipedia.org/wiki/Power_inverter

https://en.wikipedia.org/wiki/Power_engineering

 

https://en.wikipedia.org/wiki/Grid

https://en.wikipedia.org/wiki/Three-phase_electric_power

https://en.wikipedia.org/wiki/Utility_frequency#History

 

The waveform of 230 V and 50 Hz compared with 110 V and 60 Hz

The utility frequency, (power) line frequency (American English) or mains frequency (British English) is the nominal frequency of the oscillations of alternating current (AC) in a wide area synchronous grid transmitted from a power station to the end-user. In large parts of the world this is 50 Hz, although in the Americas and parts of Asia it is typically 60 Hz. Current usage by country or region is given in the list of mains electricity by country.

During the development of commercial electric power systems in the late-19th and early-20th centuries, many different frequencies (and voltages) had been used. Large investment in equipment at one frequency made standardization a slow process. However, as of the turn of the 21st century, places that now use the 50 Hz frequency tend to use 220–240 V, and those that now use 60 Hz tend to use 100–127 V. Both frequencies coexist today (Japan uses both) with no great technical reason to prefer one over the other[1] and no apparent desire for complete worldwide standardization.

In practice, the exact frequency of the grid varies around the nominal frequency, reducing when the grid is heavily loaded, and speeding up when lightly loaded. However, most utilities will adjust generation onto the grid over the course of the day to ensure a constant number of cycles occur.[2] This is used by some clocks to accurately maintain their time.

Operating factors

Several factors influence the choice of frequency in an AC system.[3] Lighting, motors, transformers, generators, and transmission lines all have characteristics which depend on the power frequency. All of these factors interact and make selection of a power frequency a matter of considerable importance. The best frequency is a compromise among competing requirements.

In the late 19th century, designers would pick a relatively high frequency for systems featuring transformers and arc lights, so as to economize on transformer materials and to reduce visible flickering of the lamps, but would pick a lower frequency for systems with long transmission lines or feeding primarily motor loads or rotary converters for producing direct current. When large central generating stations became practical, the choice of frequency was made based on the nature of the intended load. Eventually improvements in machine design allowed a single frequency to be used both for lighting and motor loads. A unified system improved the economics of electricity production, since system load was more uniform during the course of a day.

Lighting

The first applications of commercial electric power were incandescent lighting and commutator-type electric motors. Both devices operate well on DC, but DC could not be easily changed in voltage, and was generally only produced at the required utilization voltage.

If an incandescent lamp is operated on a low-frequency current, the filament cools on each half-cycle of the alternating current, leading to perceptible change in brightness and flicker of the lamps; the effect is more pronounced with arc lamps, and the later mercury-vapor lamps and fluorescent lamps. Open arc lamps made an audible buzz on alternating current, leading to experiments with high-frequency alternators to raise the sound above the range of human hearing.[citation needed]

Rotating machines

Commutator-type motors do not operate well on high-frequency AC, because the rapid changes of current are opposed by the inductance of the motor field. Though commutator-type universal motors are common in AC household appliances and power tools, they are small motors, less than 1 kW. The induction motor was found to work well on frequencies around 50 to 60 Hz, but with the materials available in the 1890s would not work well at a frequency of, say, 133 Hz. There is a fixed relationship between the number of magnetic poles in the induction motor field, the frequency of the alternating current, and the rotation speed; so, a given standard speed limits the choice of frequency (and the reverse). Once AC electric motors became common, it was important to standardize frequency for compatibility with the customer's equipment.

Generators operated by slow-speed reciprocating engines will produce lower frequencies, for a given number of poles, than those operated by, for example, a high-speed steam turbine. For very slow prime mover speeds, it would be costly to build a generator with enough poles to provide a high AC frequency. As well, synchronizing two generators to the same speed was found to be easier at lower speeds. While belt drives were common as a way to increase speed of slow engines, in very large ratings (thousands of kilowatts) these were expensive, inefficient, and unreliable. After about 1906, generators driven directly by steam turbines favored higher frequencies. The steadier rotation speed of high-speed machines allowed for satisfactory operation of commutators in rotary converters.[3] The synchronous speed N in RPM is calculated using the formula,

where f is the frequency in hertz and P is the number of poles.

Synchronous speeds of AC motors for some current and historical utility frequencies
Poles RPM at 13313 Hz RPM at 60 Hz RPM at 50 Hz RPM at 40 Hz RPM at 25 Hz RPM at 1623 Hz
2 8,000 3,600 3,000 2,400 1,500 1,000
4 4,000 1,800 1,500 1,200 750 500
6 2,666.7 1,200 1,000 800 500 333.3
8 2,000 900 750 600 375 250
10 1,600 720 600 480 300 200
12 1,333.3 600 500 400 250 166.7
14 1142.9 514.3 428.6 342.8 214.3 142.9
16 1,000 450 375 300 187.5 125
18 888.9 400 33313 26623 16623 111.1
20 800 360 300 240 150 100

Direct-current power was not entirely displaced by alternating current and was useful in railway and electrochemical processes. Prior to the development of mercury arc valve rectifiers, rotary converters were used to produce DC power from AC. Like other commutator-type machines, these worked better with lower frequencies.

Transmission and transformers

With AC, transformers can be used to step down high transmission voltages to lower customer utilization voltage. The transformer is effectively a voltage conversion device with no moving parts and requiring little maintenance. The use of AC eliminated the need for spinning DC voltage conversion motor-generators that require regular maintenance and monitoring.

Since, for a given power level, the dimensions of a transformer are roughly inversely proportional to frequency, a system with many transformers would be more economical at a higher frequency.

Electric power transmission over long lines favors lower frequencies. The effects of the distributed capacitance and inductance of the line are less at low frequency.

System interconnection

Generators can only be interconnected to operate in parallel if they are of the same frequency and wave-shape. By standardizing the frequency used, generators in a geographic area can be interconnected in a grid, providing reliability and cost savings. 

https://en.wikipedia.org/wiki/Utility_frequency#History

 

Audible noise and interference

AC-powered appliances can give off a characteristic hum, often called "mains hum", at the multiples of the frequencies of AC power that they use (see Magnetostriction). It is usually produced by motor and transformer core laminations vibrating in time with the magnetic field. This hum can also appear in audio systems, where the power supply filter or signal shielding of an amplifier is not adequate.

0:06
50 Hz power hum
0:06
60 Hz power hum
0:06
400 Hz power hum

Most countries chose their television vertical synchronization rate to be the same as the local mains supply frequency. This helped to prevent power line hum and magnetic interference from causing visible beat frequencies in the displayed picture of early analogue TV receivers particularly from the mains transformer. Although some distortion of the picture was present, it went mostly un-noticed because it was stationary. The elimination of transformers by the use of AC/DC receivers, and other changes to set design helped minimise the effect and some countries now use a vertical rate that is an approximation to the supply frequency (most notably 60 Hz areas).

Another use of this side effect is as a forensic tool. When a recording is made that captures audio near an AC appliance or socket, the hum is also incidentally recorded. The peaks of the hum repeat every AC cycle (every 20 ms for 50 Hz AC, or every 16.67 ms for 60 Hz AC). The exact frequency of the hum should match the frequency of a forensic recording of the hum at the exact date and time that the recording is alleged to have been made. Discontinuities in the frequency match or no match at all will betray the authenticity of the recording.[42] 

https://en.wikipedia.org/wiki/Utility_frequency#History

 

https://en.wikipedia.org/wiki/Electrical_network_frequency_analysis

https://en.wikipedia.org/wiki/Digital_watermarking

https://en.wikipedia.org/wiki/Utility_frequency

https://en.wikipedia.org/w/index.php?title=Mains_frequency&redirect=no

https://en.wikipedia.org/wiki/AC/DC_receiver_design

https://en.wikipedia.org/wiki/Television

https://en.wikipedia.org/wiki/Analog_television#Vertical_synchronization

 

Vertical synchronization

Vertical synchronization separates the video fields. In PAL and NTSC, the vertical sync pulse occurs within the vertical blanking interval. The vertical sync pulses are made by prolonging the length of horizontal sync pulses through almost the entire length of the scan line.

The vertical sync signal is a series of much longer pulses, indicating the start of a new field. The sync pulses occupy the whole line interval of a number of lines at the beginning and end of a scan; no picture information is transmitted during vertical retrace. The pulse sequence is designed to allow horizontal sync to continue during vertical retrace; it also indicates whether each field represents even or odd lines in interlaced systems (depending on whether it begins at the start of a horizontal line, or midway through).

The format of such a signal in 525-line NTSC is:

  • pre-equalizing pulses (6 to start scanning odd lines, 5 to start scanning even lines)
  • long-sync pulses (5 pulses)
  • post-equalizing pulses (5 to start scanning odd lines, 4 to start scanning even lines)

Each pre- or post-equalizing pulse consists of half a scan line of black signal: 2 μs at 0 V, followed by 30 μs at 0.3 V. Each long sync pulse consists of an equalizing pulse with timings inverted: 30 μs at 0  V, followed by 2 μs at 0.3  V.

In video production and computer graphics, changes to the image are often performed during the vertical blanking interval to avoid visible discontinuity of the image. If this image in the framebuffer is updated with a new image while the display is being refreshed, the display shows a mishmash of both frames, producing page tearing partway down the image.

Horizontal and vertical hold

Analog television receivers and composite monitors often provide manual controls to adjust horizontal and vertical timing.

The sweep (or deflection) oscillators were designed to run without a signal from the television station (or VCR, computer, or other composite video source). This provides a blank canvas, similar to today's "CHECK SIGNAL CABLE" messages on monitors: it allows the television receiver to display a raster to confirm the basic operation of the set's most fundamental circuits, and to allow an image to be presented during antenna placement. With sufficient signal strength, the receiver's sync separator circuit would split timebase pulses from the incoming video and use them to reset the horizontal and vertical oscillators at the appropriate time to synchronize with the signal from the station.

The free-running oscillation of the horizontal circuit is especially critical, as the horizontal deflection circuits typically power the flyback transformer (which provides acceleration potential for the CRT) as well as the filaments for the high voltage rectifier tube and sometimes the filament(s) of the CRT itself. Without the operation of the horizontal oscillator and output stages, for virtually every analog television receiver since the 1940s, there will be absolutely no illumination of the CRT's face.

The lack of precision timing components in early television receivers meant that the timebase circuits occasionally needed manual adjustment. If their free-run frequencies were too far from the actual line and field rates, the circuits would not be able to follow the incoming sync signals. Loss of horizontal synchronization usually resulted in an unwatchable picture; loss of vertical synchronization would produce an image rolling up or down the screen.

The adjustment took the form of horizontal hold and vertical hold controls, usually on the front panel along with other common controls. These adjusted the free-run frequencies of the corresponding timebase oscillators.

Properly working, adjusting a horizontal or vertical hold should cause the picture to almost "snap" into place on the screen; this is called sync lock. A slowly rolling vertical picture demonstrates that the vertical oscillator is nearly synchronized with the television station but is not locking to it, often due to a weak signal or a failure in the sync separator stage not resetting the oscillator. Sometimes, the black interval bar will almost stop at the right place, again indicating a fault in sync separation is not properly resetting the vertical oscillator.

Horizontal sync errors cause the image to be torn diagonally and repeated across the screen as if it were wrapped around a screw or a barber's pole; the greater the error, the more "copies" of the image will be seen at once wrapped around the barber pole. Given the importance of the horizontal sync circuit as a power supply to many subcircuits in the receiver, they may begin to malfunction as well; and horizontal output components that were designed to work together in a resonant circuit may become damaged.

In the earliest electronic television receivers (1930s–1950s), the time base for the sweep oscillators was generally derived from RC circuits based on carbon resistors and paper capacitors. After turning on the receiver, the vacuum tubes in the set would warm up and the oscillators would begin to run, allowing a watchable picture. Resistors were generally simple pieces of carbon inside a Bakelite enclosure, and the capacitors were usually alternating layers of paper and aluminum foil inside cardboard tubes sealed with bee's wax. Moisture ingress (from ambient air humidity) as well as thermal instability of these components affected their electrical values. As the heat from the tubes and the electrical currents passing through the RC circuits warmed them up, the electrical properties of the RC timebase would shift, causing the oscillators to drift in frequency to a point that they could no longer be synchronized with the received pulses coming from the TV station via the sync separator circuit, causing tearing (horizontal) or rolling (vertical).

Hermetically sealed passive components and cooler-running semiconductors as active components gradually improved reliability to the point where the horizontal hold was moved to the rear of the set first, and the vertical hold control (due to the longer period in the RC constant) persisted as a front panel control well into the 1970s as the consistency of larger-value capacitors increased.

By the early 1980s the efficacy of the synchronization circuits, plus the inherent stability of the sets' oscillators, had been improved to the point where these controls were no longer necessary. Integrated Circuits which eliminated the horizontal hold control were starting to appear as early as 1969.[11]

The final generations of analog television receivers (most TV sets with internal on-screen displays to adjust brightness, color, tint, contrast) used "TV-set-on-a-chip" designs where the receiver's timebases were divided down from crystal oscillators, usually based on the 3.58  MHz NTSC colorburst reference. PAL and SECAM receivers were similar though operating at different frequencies. With these sets, adjustment of the free-running frequency of either sweep oscillator was either physically impossible (being derived inside the integrated circuit) or possibly through a hidden service mode typically offering only NTSC/PAL frequency switching, accessible through the On-Screen Display's menu system.

Horizontal and Vertical Hold controls were rarely used in CRT-based computer monitors, as the quality and consistency of components were quite high by the advent of the computer age, but might be found on some composite monitors used with the 1970s–1980s home or personal computers.

There is no equivalent in modern television systems.

Other technical information

 

 

 

 

This extra complexity was one of the arguments against AC operation during the war of currents in the 1880s. In modern grids, synchronization of generators is carried out by automatic systems.  

https://en.wikipedia.org/wiki/Synchronization_(alternating_current)

https://en.wikipedia.org/wiki/Wireless

 

https://en.wikipedia.org/wiki/Transformer

https://en.wikipedia.org/wiki/Synchronization_(alternating_current)

https://en.wikipedia.org/wiki/Rectifier

https://en.wikipedia.org/wiki/Mercury-arc_valve

https://en.wikipedia.org/wiki/Turbine

https://en.wikipedia.org/wiki/Steam

https://en.wikipedia.org/wiki/Induction_motor

https://en.wikipedia.org/wiki/Inductance

https://en.wikipedia.org/wiki/Mercury-vapor_lamp

https://en.wikipedia.org/wiki/Arc_lamp

https://en.wikipedia.org/wiki/Rotary_converter

https://en.wikipedia.org/wiki/Power_inverter

https://en.wikipedia.org/wiki/Power_engineering

 

https://en.wikipedia.org/wiki/Grid

https://en.wikipedia.org/wiki/Three-phase_electric_power

https://en.wikipedia.org/wiki/Utility_frequency#History

 

The waveform of 230 V and 50 Hz compared with 110 V and 60 Hz

The utility frequency, (power) line frequency (American English) or mains frequency (British English) is the nominal frequency of the oscillations of alternating current (AC) in a wide area synchronous grid transmitted from a power station to the end-user. In large parts of the world this is 50 Hz, although in the Americas and parts of Asia it is typically 60 Hz. Current usage by country or region is given in the list of mains electricity by country.

During the development of commercial electric power systems in the late-19th and early-20th centuries, many different frequencies (and voltages) had been used. Large investment in equipment at one frequency made standardization a slow process. However, as of the turn of the 21st century, places that now use the 50 Hz frequency tend to use 220–240 V, and those that now use 60 Hz tend to use 100–127 V. Both frequencies coexist today (Japan uses both) with no great technical reason to prefer one over the other[1] and no apparent desire for complete worldwide standardization.

In practice, the exact frequency of the grid varies around the nominal frequency, reducing when the grid is heavily loaded, and speeding up when lightly loaded. However, most utilities will adjust generation onto the grid over the course of the day to ensure a constant number of cycles occur.[2] This is used by some clocks to accurately maintain their time.

Operating factors

Several factors influence the choice of frequency in an AC system.[3] Lighting, motors, transformers, generators, and transmission lines all have characteristics which depend on the power frequency. All of these factors interact and make selection of a power frequency a matter of considerable importance. The best frequency is a compromise among competing requirements.

In the late 19th century, designers would pick a relatively high frequency for systems featuring transformers and arc lights, so as to economize on transformer materials and to reduce visible flickering of the lamps, but would pick a lower frequency for systems with long transmission lines or feeding primarily motor loads or rotary converters for producing direct current. When large central generating stations became practical, the choice of frequency was made based on the nature of the intended load. Eventually improvements in machine design allowed a single frequency to be used both for lighting and motor loads. A unified system improved the economics of electricity production, since system load was more uniform during the course of a day.

Lighting

The first applications of commercial electric power were incandescent lighting and commutator-type electric motors. Both devices operate well on DC, but DC could not be easily changed in voltage, and was generally only produced at the required utilization voltage.

If an incandescent lamp is operated on a low-frequency current, the filament cools on each half-cycle of the alternating current, leading to perceptible change in brightness and flicker of the lamps; the effect is more pronounced with arc lamps, and the later mercury-vapor lamps and fluorescent lamps. Open arc lamps made an audible buzz on alternating current, leading to experiments with high-frequency alternators to raise the sound above the range of human hearing.[citation needed]

Rotating machines

Commutator-type motors do not operate well on high-frequency AC, because the rapid changes of current are opposed by the inductance of the motor field. Though commutator-type universal motors are common in AC household appliances and power tools, they are small motors, less than 1 kW. The induction motor was found to work well on frequencies around 50 to 60 Hz, but with the materials available in the 1890s would not work well at a frequency of, say, 133 Hz. There is a fixed relationship between the number of magnetic poles in the induction motor field, the frequency of the alternating current, and the rotation speed; so, a given standard speed limits the choice of frequency (and the reverse). Once AC electric motors became common, it was important to standardize frequency for compatibility with the customer's equipment.

Generators operated by slow-speed reciprocating engines will produce lower frequencies, for a given number of poles, than those operated by, for example, a high-speed steam turbine. For very slow prime mover speeds, it would be costly to build a generator with enough poles to provide a high AC frequency. As well, synchronizing two generators to the same speed was found to be easier at lower speeds. While belt drives were common as a way to increase speed of slow engines, in very large ratings (thousands of kilowatts) these were expensive, inefficient, and unreliable. After about 1906, generators driven directly by steam turbines favored higher frequencies. The steadier rotation speed of high-speed machines allowed for satisfactory operation of commutators in rotary converters.[3] The synchronous speed N in RPM is calculated using the formula,

where f is the frequency in hertz and P is the number of poles.

Synchronous speeds of AC motors for some current and historical utility frequencies
Poles RPM at 13313 Hz RPM at 60 Hz RPM at 50 Hz RPM at 40 Hz RPM at 25 Hz RPM at 1623 Hz
2 8,000 3,600 3,000 2,400 1,500 1,000
4 4,000 1,800 1,500 1,200 750 500
6 2,666.7 1,200 1,000 800 500 333.3
8 2,000 900 750 600 375 250
10 1,600 720 600 480 300 200
12 1,333.3 600 500 400 250 166.7
14 1142.9 514.3 428.6 342.8 214.3 142.9
16 1,000 450 375 300 187.5 125
18 888.9 400 33313 26623 16623 111.1
20 800 360 300 240 150 100

Direct-current power was not entirely displaced by alternating current and was useful in railway and electrochemical processes. Prior to the development of mercury arc valve rectifiers, rotary converters were used to produce DC power from AC. Like other commutator-type machines, these worked better with lower frequencies.

Transmission and transformers

With AC, transformers can be used to step down high transmission voltages to lower customer utilization voltage. The transformer is effectively a voltage conversion device with no moving parts and requiring little maintenance. The use of AC eliminated the need for spinning DC voltage conversion motor-generators that require regular maintenance and monitoring.

Since, for a given power level, the dimensions of a transformer are roughly inversely proportional to frequency, a system with many transformers would be more economical at a higher frequency.

Electric power transmission over long lines favors lower frequencies. The effects of the distributed capacitance and inductance of the line are less at low frequency.

System interconnection

Generators can only be interconnected to operate in parallel if they are of the same frequency and wave-shape. By standardizing the frequency used, generators in a geographic area can be interconnected in a grid, providing reliability and cost savings. 

https://en.wikipedia.org/wiki/Utility_frequency#History

 

Audible noise and interference

AC-powered appliances can give off a characteristic hum, often called "mains hum", at the multiples of the frequencies of AC power that they use (see Magnetostriction). It is usually produced by motor and transformer core laminations vibrating in time with the magnetic field. This hum can also appear in audio systems, where the power supply filter or signal shielding of an amplifier is not adequate.

0:06
50 Hz power hum
0:06
60 Hz power hum
0:06
400 Hz power hum

Most countries chose their television vertical synchronization rate to be the same as the local mains supply frequency. This helped to prevent power line hum and magnetic interference from causing visible beat frequencies in the displayed picture of early analogue TV receivers particularly from the mains transformer. Although some distortion of the picture was present, it went mostly un-noticed because it was stationary. The elimination of transformers by the use of AC/DC receivers, and other changes to set design helped minimise the effect and some countries now use a vertical rate that is an approximation to the supply frequency (most notably 60 Hz areas).

Another use of this side effect is as a forensic tool. When a recording is made that captures audio near an AC appliance or socket, the hum is also incidentally recorded. The peaks of the hum repeat every AC cycle (every 20 ms for 50 Hz AC, or every 16.67 ms for 60 Hz AC). The exact frequency of the hum should match the frequency of a forensic recording of the hum at the exact date and time that the recording is alleged to have been made. Discontinuities in the frequency match or no match at all will betray the authenticity of the recording.[42] 

https://en.wikipedia.org/wiki/Utility_frequency#History

 

https://en.wikipedia.org/wiki/Electrical_network_frequency_analysis

https://en.wikipedia.org/wiki/Digital_watermarking

https://en.wikipedia.org/wiki/Utility_frequency

https://en.wikipedia.org/w/index.php?title=Mains_frequency&redirect=no

https://en.wikipedia.org/wiki/AC/DC_receiver_design

https://en.wikipedia.org/wiki/Television

https://en.wikipedia.org/wiki/Analog_television#Vertical_synchronization

 

Vertical synchronization

Vertical synchronization separates the video fields. In PAL and NTSC, the vertical sync pulse occurs within the vertical blanking interval. The vertical sync pulses are made by prolonging the length of horizontal sync pulses through almost the entire length of the scan line.

The vertical sync signal is a series of much longer pulses, indicating the start of a new field. The sync pulses occupy the whole line interval of a number of lines at the beginning and end of a scan; no picture information is transmitted during vertical retrace. The pulse sequence is designed to allow horizontal sync to continue during vertical retrace; it also indicates whether each field represents even or odd lines in interlaced systems (depending on whether it begins at the start of a horizontal line, or midway through).

The format of such a signal in 525-line NTSC is:

  • pre-equalizing pulses (6 to start scanning odd lines, 5 to start scanning even lines)
  • long-sync pulses (5 pulses)
  • post-equalizing pulses (5 to start scanning odd lines, 4 to start scanning even lines)

Each pre- or post-equalizing pulse consists of half a scan line of black signal: 2 μs at 0 V, followed by 30 μs at 0.3 V. Each long sync pulse consists of an equalizing pulse with timings inverted: 30 μs at 0  V, followed by 2 μs at 0.3  V.

In video production and computer graphics, changes to the image are often performed during the vertical blanking interval to avoid visible discontinuity of the image. If this image in the framebuffer is updated with a new image while the display is being refreshed, the display shows a mishmash of both frames, producing page tearing partway down the image.

Horizontal and vertical hold

Analog television receivers and composite monitors often provide manual controls to adjust horizontal and vertical timing.

The sweep (or deflection) oscillators were designed to run without a signal from the television station (or VCR, computer, or other composite video source). This provides a blank canvas, similar to today's "CHECK SIGNAL CABLE" messages on monitors: it allows the television receiver to display a raster to confirm the basic operation of the set's most fundamental circuits, and to allow an image to be presented during antenna placement. With sufficient signal strength, the receiver's sync separator circuit would split timebase pulses from the incoming video and use them to reset the horizontal and vertical oscillators at the appropriate time to synchronize with the signal from the station.

The free-running oscillation of the horizontal circuit is especially critical, as the horizontal deflection circuits typically power the flyback transformer (which provides acceleration potential for the CRT) as well as the filaments for the high voltage rectifier tube and sometimes the filament(s) of the CRT itself. Without the operation of the horizontal oscillator and output stages, for virtually every analog television receiver since the 1940s, there will be absolutely no illumination of the CRT's face.

The lack of precision timing components in early television receivers meant that the timebase circuits occasionally needed manual adjustment. If their free-run frequencies were too far from the actual line and field rates, the circuits would not be able to follow the incoming sync signals. Loss of horizontal synchronization usually resulted in an unwatchable picture; loss of vertical synchronization would produce an image rolling up or down the screen.

The adjustment took the form of horizontal hold and vertical hold controls, usually on the front panel along with other common controls. These adjusted the free-run frequencies of the corresponding timebase oscillators.

Properly working, adjusting a horizontal or vertical hold should cause the picture to almost "snap" into place on the screen; this is called sync lock. A slowly rolling vertical picture demonstrates that the vertical oscillator is nearly synchronized with the television station but is not locking to it, often due to a weak signal or a failure in the sync separator stage not resetting the oscillator. Sometimes, the black interval bar will almost stop at the right place, again indicating a fault in sync separation is not properly resetting the vertical oscillator.

Horizontal sync errors cause the image to be torn diagonally and repeated across the screen as if it were wrapped around a screw or a barber's pole; the greater the error, the more "copies" of the image will be seen at once wrapped around the barber pole. Given the importance of the horizontal sync circuit as a power supply to many subcircuits in the receiver, they may begin to malfunction as well; and horizontal output components that were designed to work together in a resonant circuit may become damaged.

In the earliest electronic television receivers (1930s–1950s), the time base for the sweep oscillators was generally derived from RC circuits based on carbon resistors and paper capacitors. After turning on the receiver, the vacuum tubes in the set would warm up and the oscillators would begin to run, allowing a watchable picture. Resistors were generally simple pieces of carbon inside a Bakelite enclosure, and the capacitors were usually alternating layers of paper and aluminum foil inside cardboard tubes sealed with bee's wax. Moisture ingress (from ambient air humidity) as well as thermal instability of these components affected their electrical values. As the heat from the tubes and the electrical currents passing through the RC circuits warmed them up, the electrical properties of the RC timebase would shift, causing the oscillators to drift in frequency to a point that they could no longer be synchronized with the received pulses coming from the TV station via the sync separator circuit, causing tearing (horizontal) or rolling (vertical).

Hermetically sealed passive components and cooler-running semiconductors as active components gradually improved reliability to the point where the horizontal hold was moved to the rear of the set first, and the vertical hold control (due to the longer period in the RC constant) persisted as a front panel control well into the 1970s as the consistency of larger-value capacitors increased.

By the early 1980s the efficacy of the synchronization circuits, plus the inherent stability of the sets' oscillators, had been improved to the point where these controls were no longer necessary. Integrated Circuits which eliminated the horizontal hold control were starting to appear as early as 1969.[11]

The final generations of analog television receivers (most TV sets with internal on-screen displays to adjust brightness, color, tint, contrast) used "TV-set-on-a-chip" designs where the receiver's timebases were divided down from crystal oscillators, usually based on the 3.58  MHz NTSC colorburst reference. PAL and SECAM receivers were similar though operating at different frequencies. With these sets, adjustment of the free-running frequency of either sweep oscillator was either physically impossible (being derived inside the integrated circuit) or possibly through a hidden service mode typically offering only NTSC/PAL frequency switching, accessible through the On-Screen Display's menu system.

Horizontal and Vertical Hold controls were rarely used in CRT-based computer monitors, as the quality and consistency of components were quite high by the advent of the computer age, but might be found on some composite monitors used with the 1970s–1980s home or personal computers.

There is no equivalent in modern television systems.

Other technical information

 

 

 

 

This extra complexity was one of the arguments against AC operation during the war of currents in the 1880s. In modern grids, synchronization of generators is carried out by automatic systems.  

https://en.wikipedia.org/wiki/Synchronization_(alternating_current)

https://en.wikipedia.org/wiki/Wireless

 

05-14-2023-1606 - transformer, synchronization AC, rectifier, mercury-arc valve, turbine, steam, induction motor, inductance, mercury vapor lamp, arc lamp, rotary converter, power inverter, etc. (draft)

 

No comments:

Post a Comment