Blog Archive

Monday, September 20, 2021

09-20-2021-1058 - Clebsch–Gordan coefficients expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis.

In mathematical physicsClebsch–Gordan coefficients are the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. Mathematically, they specify the decomposition of the tensor product of two irreducible representations into a direct sum of irreducible representations, where the type and the multiplicities of these irreducible representations are known abstractly. The name derives from the German mathematicians Alfred Clebsch (1833–1872) and Paul Gordan (1837–1912), who encountered an equivalent problem in invariant theory.

Generalization to SU(3) of Clebsch–Gordan coefficients is useful because of their utility in characterizing hadronic decays, where a flavor-SU(3) symmetry exists (the eightfold way) that connects the three light  quarks: up, down, and strange.

https://en.wikipedia.org/wiki/Clebsch–Gordan_coefficients_for_SU(3)

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.

The group operation is matrix multiplication. The special unitary group is a normal subgroup of the unitary group U(n), consisting of all n×n unitary matrices. As a compact classical groupU(n) is the group that preserves the standard inner product on .[a] It is itself a subgroup of the general linear group.

The SU(n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.[1]

The simplest case, SU(1), is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+I, −I}.[b] SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations.

https://en.wikipedia.org/wiki/Special_unitary_group

In particle physics, the Georgi–Glashow model[1] is a particular grand unified theory (GUT) proposed by Howard Georgi and Sheldon Glashow in 1974. In this model the standard model gauge groups SU(3) × SU(2) × U(1) are combined into a single simple gauge group SU(5). The unified group SU(5) is then thought to be spontaneously broken into the standard model subgroup below a very high energy scale called the grand unification scale.

Since the Georgi–Glashow model combines leptons and quarks into single irreducible representations, there exist interactions which do not conserve baryon number, although they still conserve the quantum number B – Lassociated with the symmetry of the common representation. This yields a mechanism for proton decay, and the rate of proton decay can be predicted from the dynamics of the model. However, proton decay has not yet been observed experimentally, and the resulting lower limit on the lifetime of the proton contradicts the predictions of this model. However, the elegance of the model has led particle physicists to use it as the foundation for more complex models which yield longer proton lifetimes, particularly SO(10) in basic and SUSY variants.

(For a more elementary introduction to how the representation theory of Lie algebras are related to particle physics, see the article Particle physics and representation theory.)

This model suffers from the doublet–triplet splitting problem.

https://en.wikipedia.org/wiki/Georgi–Glashow_model

Grand Unified Theory (GUT) is a model in particle physics in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagneticweak, and strong forces are merged into a single force. Although this unified force has not been directly observed, the many GUT models theorize its existence. If unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universein which these three fundamental interactions were not yet distinct.

Experiments have confirmed that at high energy the electromagnetic interaction and weak interaction unify into a single electroweak interaction. GUT models predict that at even higher energy, the strong interaction and the electroweak interaction will unify into a single electronuclear interaction. This interaction is characterized by one larger gauge symmetry and thus several force carriers, but one unified coupling constant. Unifying gravity with the electronuclear interaction would provide a more comprehensive theory of everything (TOE) rather than a Grand Unified Theory. Thus, GUTs are often seen as an intermediate step towards a TOE.

The novel particles predicted by GUT models are expected to have extremely high masses—around the GUT scale of  GeV (just a few orders of magnitude below the Planck scale of  GeV)—and so are well beyond the reach of any foreseen particle collider experiments. Therefore, the particles predicted by GUT models will be unable to be observed directly, and instead the effects of grand unification might be detected through indirect observations such as proton decayelectric dipole moments of elementary particles, or the properties of neutrinos.[1] Some GUTs, such as the Pati-Salam model, predict the existence of magnetic monopoles.

While GUTs might be expected to offer simplicity over the complications present in the Standard Model, realistic models remain complicated because they need to introduce additional fields and interactions, or even additional dimensions of space, in order to reproduce observed fermion masses and mixing angles. This difficulty, in turn, may be related to an existence[clarification needed] of family symmetries beyond the conventional GUT models. Due to this, and the lack of any observed effect of grand unification so far, there is no generally accepted GUT model.

Models that do not unify the three interactions using one simple group as the gauge symmetry, but do so using semisimple groups, can exhibit similar properties and are sometimes referred to as Grand Unified Theories as well.

https://en.wikipedia.org/wiki/Grand_Unified_Theory 



No comments:

Post a Comment