Blog Archive

Thursday, May 11, 2023

05-11-2023-0349 - geology shear variety draft, mylonite, pure, competence, vergence, syncline, monocline, detachment fold, stylolite, slickenside, texture, pressure solution, oblique foliation, fissility, crenulation, compaction, transfer zone, transform fault, cataclastic rock, disturbance, fault scarp, thrust fault, sedimentary basin, suture, structural basin, thrust tectonics, thin-skinned deformation, rift, divergent boundary, accretionary wedge, autochthorn, Autochthon, continental collision, convergent boundary, fold mountains, inversion, mountain formation, tectonite, plate techtonics, etc. (draft)

https://en.wikipedia.org/wiki/Shear_(geology)

https://en.wikipedia.org/wiki/Mylonite

https://en.wikipedia.org/wiki/Pure_shear

https://en.wikipedia.org/wiki/Competence_(geology)

https://en.wikipedia.org/wiki/Vergence_(geology)

https://en.wikipedia.org/wiki/Syncline

https://en.wikipedia.org/wiki/Monocline

https://en.wikipedia.org/wiki/Homocline

https://en.wikipedia.org/wiki/Detachment_fold

https://en.wikipedia.org/wiki/Stylolite

https://en.wikipedia.org/wiki/Slickenside

https://en.wikipedia.org/wiki/Texture_(geology)

https://en.wikipedia.org/wiki/Pressure_solution

https://en.wikipedia.org/wiki/Oblique_foliation

https://en.wikipedia.org/wiki/Fissility_(geology)

https://en.wikipedia.org/wiki/Crenulation

https://en.wikipedia.org/wiki/Compaction_(geology)

https://en.wikipedia.org/wiki/Transfer_zone

https://en.wikipedia.org/wiki/Transform_fault

https://en.wikipedia.org/wiki/Cataclastic_rock

https://en.wikipedia.org/wiki/Disturbance_(geology)

https://en.wikipedia.org/wiki/Fault_scarp

https://en.wikipedia.org/wiki/Thrust_fault

https://en.wikipedia.org/wiki/Sedimentary_basin

https://en.wikipedia.org/wiki/Suture_(geology)

https://en.wikipedia.org/wiki/Structural_basin

https://en.wikipedia.org/wiki/Thrust_tectonics

https://en.wikipedia.org/wiki/Thin-skinned_deformation

https://en.wikipedia.org/wiki/Rift

https://en.wikipedia.org/wiki/Divergent_boundary

https://en.wikipedia.org/wiki/Accretionary_wedge

https://en.wikipedia.org/wiki/Autochthon_(geology)

https://en.wikipedia.org/wiki/Continental_collision

https://en.wikipedia.org/wiki/Convergent_boundary

https://en.wikipedia.org/wiki/Fold_mountains

https://en.wikipedia.org/wiki/Inversion_(geology)

https://en.wikipedia.org/wiki/Mountain_formation

https://en.wikipedia.org/wiki/Tectonite


https://en.wikipedia.org/wiki/Tectonite

Plate tectonics (from the Late Latin: tectonicus, from the Ancient Greek: τεκτονικός, lit.'pertaining to building')[1] is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large tectonic plates which have been slowly moving since about 3.4 billion years ago.[2] The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. Plate tectonics came to be generally accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s.

Earth's lithosphere, which is the rigid outermost shell of the planet (the crust and upper mantle), is broken into seven or eight major plates (depending on how they are defined) and many minor plates or "platelets". Where the plates meet, their relative motion determines the type of plate boundary: convergent, divergent, or transform. Earthquakes, volcanic activity, mountain-building, and oceanic trench formation occur along these plate boundaries (or faults). The relative movement of the plates typically ranges from zero to 10 cm annually.[3]

Tectonic plates are composed of the oceanic lithosphere and the thicker continental lithosphere, each topped by its own kind of crust. Along convergent boundaries, the process of subduction, or one plate moving under another, carries the edge of the lower one down into the mantle; the area of material lost is balanced by the formation of new (oceanic) crust along divergent margins by seafloor spreading. In this way, the total geoid surface area of the lithosphere remains constant. This prediction of plate tectonics is also referred to as the conveyor belt principle. Earlier theories, since disproven, proposed gradual shrinking (contraction) or gradual expansion of the globe.

Tectonic plates are able to move because Earth's lithosphere has greater mechanical strength than the underlying asthenosphere. Lateral density variations in the mantle result in convection; that is, the slow creeping motion of Earth's solid mantle. Plate movement is thought to be driven by a combination of the motion of the seafloor away from spreading ridges due to variations in topography (the ridge is a topographic high) and density changes in the crust (density increases as newly-formed crust cools and moves away from the ridge). At subduction zones the relatively cold, dense oceanic crust sinks down into the mantle forming the downward convecting limb of a mantle cell,[4] and there is general consensus that this results in the strongest driver of the plates.[5][6] The relative importance of other proposed factors such as active convection, upwelling and flow inside the mantle, and tidal drag of the moon, and their relationship to each other is still the subject of debate. 

https://en.wikipedia.org/wiki/Plate_tectonics

 

No comments:

Post a Comment