Blog Archive

Sunday, September 19, 2021

09-19-2021-0650 - Clausius–Clapeyron relation

 "Clapeyron equation" and "Clapeyron's equation" redirect here. For a state equation, see ideal gas law.

The Clausius–Clapeyron relation, named after Rudolf Clausius[1] and Benoît Paul Émile Clapeyron,[2] is a way of characterizing a discontinuous phase transition between two phases of matter of a single constituent. The relevance to climatology is that the water-holding capacity of the atmosphere increases by about 7% for every 1 °C (1.8 °F) rise in temperature.


Definition[edit]

On a pressuretemperature (P–T) diagram, the line separating the two phases is known as the coexistence curve. The Clausius–Clapeyron relation gives the slope of the tangents to this curve. Mathematically,

where  is the slope of the tangent to the coexistence curve at any point,  is the specific latent heat is the temperature is the specific volume change of the phase transition, and  is the specific entropy change of the phase transition.

Derivations[edit]

A typical phase diagram. The dotted green line gives the anomalous behavior of water. The Clausius–Clapeyron relation can be used to find the relationship between pressure and temperature along phase boundaries.

Derivation from state postulate[edit]

Using the state postulate, take the specific entropy  for a homogeneous substance to be a function of specific volume  and temperature .[3]: 508

The Clausius–Clapeyron relation characterizes behavior of a closed system during a phase change, during which temperature and pressure are constant by definition. Therefore,[3]: 508

Using the appropriate Maxwell relation gives[3]: 508

where  is the pressure. Since pressure and temperature are constant, by definition the derivative of pressure with respect to temperature does not change.[4][5]: 57, 62 & 671 Therefore, the partial derivative of specific entropy may be changed into a total derivative

and the total derivative of pressure with respect to temperature may be factored out when integrating from an initial phase  to a final phase ,[3]: 508 to obtain

where  and  are respectively the change in specific entropy and specific volume. Given that a phase change is an internally reversible process, and that our system is closed, the first law of thermodynamics holds

where  is the internal energy of the system. Given constant pressure and temperature (during a phase change) and the definition of specific enthalpy , we obtain

Given constant pressure and temperature (during a phase change), we obtain[3]: 508

Substituting the definition of specific latent heat  gives

Substituting this result into the pressure derivative given above (), we obtain[3]: 508[6]

This result (also known as the Clapeyron equation) equates the slope of the tangent to the coexistence curve , at any given point on the curve, to the function  of the specific latent heat , the temperature , and the change in specific volume .

Derivation from Gibbs–Duhem relation[edit]

Suppose two phases,  and , are in contact and at equilibrium with each other. Their chemical potentials are related by

Furthermore, along the coexistence curve,

One may therefore use the Gibbs–Duhem relation

(where  is the specific entropy is the specific volume, and  is the molar mass) to obtain

Rearrangement gives

from which the derivation of the Clapeyron equation continues as in the previous section.

Ideal gas approximation at low temperatures[edit]

When the phase transition of a substance is between a gas phase and a condensed phase (liquid or solid), and occurs at temperatures much lower than the critical temperature of that substance, the specific volume of the gas phase  greatly exceeds that of the condensed phase . Therefore, one may approximate

at low temperatures. If pressure is also low, the gas may be approximated by the ideal gas law, so that

where  is the pressure,  is the specific gas constant, and  is the temperature. Substituting into the Clapeyron equation

we can obtain the Clausius–Clapeyron equation[3]: 509

for low temperatures and pressures,[3]: 509 where  is the specific latent heat of the substance.

Let  and  be any two points along the coexistence curve between two phases  and . In general,  varies between any two such points, as a function of temperature. But if  is constant,

or[5]: 672[7]

These last equations are useful because they relate equilibrium or saturation vapor pressure and temperature to the latent heat of the phase change, without requiring specific volume data.

Applications[edit]

Chemistry and chemical engineering[edit]

For transitions between a gas and a condensed phase with the approximations described above, the expression may be rewritten as

where  is a constant. For a liquid-gas transition,  is the specific latent heat (or specific enthalpy) of vaporization; for a solid-gas transition,  is the specific latent heat of sublimation. If the latent heat is known, then knowledge of one point on the coexistence curve determines the rest of the curve. Conversely, the relationship between  and  is linear, and so linear regression is used to estimate the latent heat.

Meteorology and climatology[edit]

Atmospheric water vapor drives many important meteorologic phenomena (notably precipitation), motivating interest in its dynamics. The Clausius–Clapeyron equation for water vapor under typical atmospheric conditions (near standard temperature and pressure) is

where:

The temperature dependence of the latent heat  (and of the saturation vapor pressure cannot be neglected in this application. Fortunately, the August–Roche–Magnus formula provides a very good approximation:

 [8][9]

In the above expression,  is in hPa and  is in Celsius, whereas everywhere else on this page,  is an absolute temperature (e.g. in Kelvin). (This is also sometimes called the Magnus or Magnus–Tetensapproximation, though this attribution is historically inaccurate.)[10] But see also this discussion of the accuracy of different approximating formulae for saturation vapour pressure of water.

Under typical atmospheric conditions, the denominator of the exponent depends weakly on  (for which the unit is Celsius). Therefore, the August–Roche–Magnus equation implies that saturation water vapor pressure changes approximately exponentially with temperature under typical atmospheric conditions, and hence the water-holding capacity of the atmosphere increases by about 7% for every 1 °C rise in temperature.[11]

Example[edit]

One of the uses of this equation is to determine if a phase transition will occur in a given situation. Consider the question of how much pressure is needed to melt ice at a temperature  below 0 °C. Note that water is unusual in that its change in volume upon melting is negative. We can assume

and substituting in

 (latent heat of fusion for water),
 K (absolute temperature), and
 (change in specific volume from solid to liquid),

we obtain

To provide a rough example of how much pressure this is, to melt ice at −7 °C (the temperature many ice skating rinks are set at) would require balancing a small car (mass = 1000 kg[12]) on a thimble (area = 1 cm2).

Second derivative[edit]

While the Clausius–Clapeyron relation gives the slope of the coexistence curve, it does not provide any information about its curvature or second derivative. The second derivative of the coexistence curve of phases 1 and 2 is given by [13]

where subscripts 1 and 2 denote the different phases,  is the specific heat capacity at constant pressure,  is the thermal expansion coefficient, and  is the isothermal compressibility.

See also[edit]


Categories

References[edit]

  1. ^ Clausius, R. (1850). "Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen"[On the motive power of heat and the laws which can be deduced therefrom regarding the theory of heat]. Annalen der Physik (in German). 155 (4): 500–524. Bibcode:1850AnP...155..500Cdoi:10.1002/andp.18501550403hdl:2027/uc1.$b242250.
  2. ^ Clapeyron, M. C. (1834). "Mémoire sur la puissance motrice de la chaleur"Journal de l'École polytechnique [fr] (in French). 23: 153–190. ark:/12148/bpt6k4336791/f157.
  3. Jump up to: a b c d e f g h Wark, Kenneth (1988) [1966]. "Generalized Thermodynamic Relationships". Thermodynamics (5th ed.). New York, NY: McGraw-Hill, Inc. ISBN 978-0-07-068286-3.
  4. ^ Carl Rod Nave (2006). "PvT Surface for a Substance which Contracts Upon Freezing"HyperPhysics. Georgia State University. Retrieved 2007-10-16.
  5. Jump up to: a b Çengel, Yunus A.; Boles, Michael A. (1998) [1989]. Thermodynamics – An Engineering Approach. McGraw-Hill Series in Mechanical Engineering (3rd ed.). Boston, MA.: McGraw-Hill. ISBN 978-0-07-011927-7.
  6. ^ Salzman, William R. (2001-08-21). "Clapeyron and Clausius–Clapeyron Equations"Chemical Thermodynamics. University of Arizona. Archived from the original on 2007-06-07. Retrieved 2007-10-11.
  7. ^ Masterton, William L.; Hurley, Cecile N. (2008). Chemistry : principles and reactions (6th ed.). Cengage Learning. p. 230. ISBN 9780495126713. Retrieved 3 April 2020.
  8. ^ Alduchov, Oleg; Eskridge, Robert (1997-11-01), Improved Magnus' Form Approximation of Saturation Vapor PressureNOAAdoi:10.2172/548871 — Equation 25 provides these coefficients.
  9. ^ Alduchov, Oleg A.; Eskridge, Robert E. (1996). "Improved Magnus Form Approximation of Saturation Vapor Pressure"Journal of Applied Meteorology35 (4): 601–9. Bibcode:1996JApMe..35..601Adoi:10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2. Equation 21 provides these coefficients.
  10. ^ Lawrence, M. G. (2005). "The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications" (PDF)Bulletin of the American Meteorological Society86 (2): 225–233. Bibcode:2005BAMS...86..225Ldoi:10.1175/BAMS-86-2-225.
  11. ^ IPCC, Climate Change 2007: Working Group I: The Physical Science Basis, "FAQ 3.2 How is Precipitation Changing ?", URL http://www.ipcc.ch/publications_and_data/ar4/wg1/en/faq-3-2.htmlArchived 2018-11-02 at the Wayback Machine
  12. ^ Zorina, Yana (2000). "Mass of a Car"The Physics Factbook.
  13. ^ Krafcik, Matthew; Sánchez Velasco, Eduardo (2014). "Beyond Clausius–Clapeyron: Determining the second derivative of a first-order phase transition line". American Journal of Physics82 (4): 301–305. Bibcode:2014AmJPh..82..301Kdoi:10.1119/1.4858403.

Bibliography[edit]


https://en.wikipedia.org/wiki/Clausius–Clapeyron_relation


No comments:

Post a Comment