Blog Archive

Saturday, August 14, 2021

08-13-2021-2311 - Interstellar and Circumstellar Molecules

 This is a list of molecules that have been detected in the interstellar medium and circumstellar envelopes, grouped by the number of component atoms. The chemical formula is listed for each detected compound, along with any ionized form that has also been observed.

https://en.wikipedia.org/wiki/List_of_interstellar_and_circumstellar_molecules

The molecules listed below were detected through astronomical spectroscopy. Their spectral features arise because molecules either absorb or emit a photon of light when they transition between two molecular energy levels. The energy (and thus the wavelength) of the photon matches the energy difference between the levels involved. Molecular electronic transitions occur when one of the molecule's electrons moves between molecular orbitals, producing a spectral line in the ultravioletoptical or near-infrared parts of the electromagnetic spectrum. Alternatively, a vibrational transition transfers quanta of energy to (or from) vibrations of molecular bonds, producing signatures in the mid- or far-infrared. Gas-phase molecules also have quantised rotational levels, leading to transitions at microwave or radio wavelengths.[1]

Sometimes a transition can involve more than one of these types of energy level e.g. ro-vibrational spectroscopychanges both the rotational and vibrational energy level. Occasionally all three occur together, as in the Phillips band of C2 (diatomic carbon), in which an electronic transition produces a line in the near-infrared, which is then split into several vibronic bands by a simultaneous change in vibrational level, which in turn are split again into rotational branches.[2]

The spectrum of a particular molecule is governed by the selection rules of quantum chemistry and the molecular symmetry. Some molecules have simple spectra which are easy to identify, whilst others (even some small molecules) have extremely complex spectra with flux spread among many different lines, making them far harder to detect.[3] Interactions between the atomic nuclei and the electrons sometimes causes further hyperfine structure of the spectral lines. If the molecule exists in multiple isotopologues (versions containing different atomic isotopes), the spectrum is further complicated by isotope shifts.

Detection of a new interstellar or circumstellar molecule requires identifying a suitable astronomical object where it is likely to be present, then observing it with a telescope equipped with a spectrograph working at the required wavelength, spectral resolution and sensitivity. The first molecule detected in the interstellar medium was the methylidyne radical (CH) in 1937, through its strong electronic transition at 4300 angstroms (in the optical).[4] Advances in astronomical instrumentation have led to increasing numbers of new detections. From the 1950s onwards, radio astronomy began to dominate new detections, with sub-mm astronomy also becoming important from the 1990s.[3]

The inventory of detected molecules is highly biased towards certain types which are easier to detect e.g. radio astronomy is most sensitive to small linear molecules with a high molecular dipole.[3] The most common molecule in the Universe, H2 (molecular hydrogen) is completely invisible to radio telescopes because it has no dipole;[3] its electronic transitions are too energetic for optical telescopes, so detection of H2 required ultraviolet observations with a sounding rocket.[5] Vibrational lines are often not specific to an individual molecule, allowing only the general class to be identified. For example, polycyclic aromatic hydrocarbons (PAHs) are known to be common in space due to their vibrational lines, which are widely observed in the mid-infrared, but it has not been possible to identify exactly which molecules are responsible.[6]

One of the richest sources for detecting interstellar molecules is Sagittarius B2 (Sgr B2), a giant molecular cloud near the centre of the Milky Way. About half of the molecules listed below were first found in Sgr B2, and many of the others have been subsequently detected there.[7] A rich source of circumstellar molecules is CW Leonis (also known as IRC +10216), a nearby carbon star, where about 50 molecules have been identified.[8] There is no clear boundary between interstellar and circumstellar media, so both are included in the tables below.

The discipline of astrochemistry includes understanding how these molecules form and explaining their abundances. The extremely low density of the interstellar medium is not conducive to the formation of molecules, making conventional gas-phase reactions between neutral species (atoms or molecules) inefficient. Many regions also have very low temperatures (typically 10 kelvin inside a molecular cloud), further reducing the reaction rates, or high ultraviolet radiation fields, which destroy molecules through photochemistry.[9] Explaining the observed abundances of interstellar molecules requires calculating the balance between formation and destruction rates using gas-phase ion chemistry (often driven by cosmic rays), surface chemistryon cosmic dustradiative transfer including interstellar extinction, and sophisticated reaction networks.[10]

Molecules[edit]

The following tables list molecules that have been detected in the interstellar medium or circumstellar matter, grouped by the number of component atoms. Neutral molecules and their molecular ions are listed in separate columns; if there is no entry in the molecule column, only the ionized form has been detected. Designations (names of molecules) are those used in the scientific literature describing the detection; if none was given that field is left empty. Mass is listed in atomic mass unitsDeuterated molecules, which contain at least one deuterium (2H) atom, have slightly different masses and are listed in a separate table. The total number of unique species, including distinct ionization states, is indicated in each section header.

Most of the molecules detected so far are organic. The only detected inorganic molecule with five or more atoms is SiH4.[11] Molecules larger than that all have at least one carbon atom, with no N−N or O−O bonds.[11]

Carbon monoxide is frequently used to trace the distribution of mass in molecular clouds.[12]

Diatomic (43)[edit]

MoleculeDesignationMassIons
AlClAluminium monochloride[13][14]62.5
AlFAluminium monofluoride[13][15]46
AlOAluminium monoxide[16]43
Argonium[17][18]37[note 1]ArH+
C2Diatomic carbon[19][20]24
Fluoromethylidynium31CF+[21]
CHMethylidyne radical[22][23]13CH+[24]
CNCyano radical[13][23][25][26]26CN+,[27] CN[28]
COCarbon monoxide[13][29][30]28CO+[31]
CPCarbon monophosphide[26]43
CSCarbon monosulfide[13]44
FeOIron(II) oxide[32]82
Helium hydride ion[33][34]5HeH+
H2Molecular hydrogen[5]2
HClHydrogen chloride[35]36.5HCl+[36]
HFHydrogen fluoride[37]20
HOHydroxyl radical[13]17OH+[38]
KClPotassium chloride[13][14]75.5
NHImidogen radical[39][40]15
N2Molecular nitrogen[41][42]28
NONitric oxide[43]30NO+[27]
NSNitrogen sulfide[13]46
NaClSodium chloride[13][14]58.5
Magnesium monohydride cation25.3MgH+[27]
O2Molecular oxygen[44]32
PNPhosphorus mononitride[45][46]45
POPhosphorus monoxide[47]47
SHSulfur monohydride[48]33SH+[49]
SOSulfur monoxide[13]48SO+[24]
SiCCarborundum[13][50]40
SiN[51]42
SiOSilicon monoxide[13]44
SiSSilicon monosulfide[13]60
TiOTitanium(II) oxide[52]63.9
The H+
3
 cation is one of the most abundant ions in the universe. It was first detected in 1993.[53][54]

Triatomic (44)[edit]

MoleculeDesignationMassIons
AlNCAluminium isocyanide[13]53
AlOHAluminium hydroxide[55]44
C3Tricarbon[56][57]36
C2HEthynyl radical[13][25]25
CCNCyanomethylidyne[58]38
C2ODicarbon monoxide[59]40
C2SThioxoethenylidene[60]56
C2P[61]55
CO2Carbon dioxide[62]44
CaNCCalcium isocyanide[63]92
FeCNIron cyanide[64]82
Protonated molecular hydrogen3H+
3
[53][54]
H2CMethylene radical[65]14
Chloronium37.5H2Cl+[66]
H2OWater[67]18H2O+[68]
HO2Hydroperoxyl[69]33
H2SHydrogen sulfide[13]34
HCNHydrogen cyanide[13][25][70]27
HNCHydrogen isocyanide[71][72]27
HCOFormyl radical[73]29HCO+[24][73][74]
HCPPhosphaethyne[75]44
HCSThioformyl[76]45HCS+[24][74]
Diazenylium[74][24][77]29HN+
2
HNONitroxyl[78]31
Isoformyl29HOC+[25]
HSCIsothioformyl[76]45
KCNPotassium cyanide[13]65
MgCNMagnesium cyanide[13]50
MgNCMagnesium isocyanide[13]50
NH2Amino radical[79]16
N2ONitrous oxide[80]44
NaCNSodium cyanide[13]49
NaOHSodium hydroxide[81]40
OCSCarbonyl sulfide[82]60
O3Ozone[83]48
SO2Sulfur dioxide[13][84]64
c-SiC2c-Silicon dicarbide[13][50]52
SiCSiDisilicon carbide[85]68
SiCNSilicon carbonitride[86]54
SiNC[87]54
TiO2Titanium dioxide[52]79.9
Formaldehyde is an organic molecule that is widely distributed in the interstellar medium.[88]

Four atoms (28)[edit]

MoleculeDesignationMassIons
CH3Methyl radical[89]15
l-C3HPropynylidyne[13][90]37l-C3H+[91]
c-C3HCyclopropynylidyne[92]37
C3NCyanoethynyl[93]50C3N[94]
C3OTricarbon monoxide[90]52
C3STricarbon sulfide[13][60]68
Hydronium19H3O+[95]
C2H2Acetylene[96]26
H2CNMethylene amidogen[97]28H2CN+[24]
H2COFormaldehyde[88]30
H2CSThioformaldehyde[98]46
HCCN[99]39
HCCOKetenyl[100]41
Protonated hydrogen cyanide28HCNH+[74]
Protonated carbon dioxide45HOCO+[101]
HCNOFulminic acid[102]43
HOCNCyanic acid[103]43
CNCNIsocyanogen[104]52
HOOHHydrogen peroxide[105]34
HNCOIsocyanic acid[84]43
HNCSIsothiocyanic acid[106]59
NH3Ammonia[13][107]17
HSCNThiocyanic acid[108]59
SiC3Silicon tricarbide[13] 64
HMgNCHydromagnesium isocyanide[109] 51.3
HNO2Nitrous acid[110]47
Methane, the primary component of natural gas, has also been detected on comets and in the atmosphere of several planets in the Solar System.[111]

Five atoms (20)[edit]

MoleculeDesignationMassIons
Ammonium ion[112][113] 18NH+
4
CH4Methane[114]16
CH3OMethoxy radical[115]31
c-C3H2Cyclopropenylidene[25][116][117]38
l-H2C3Propadienylidene[117]38
H2CCNCyanomethyl[118]40
H2C2OKetene[84]42
H2CNHMethylenimine[119]29
HNCNHCarbodiimide[120]42
Protonated formaldehyde31H2COH+[121]
C4HButadiynyl[13]49C4H[122]
HC3NCyanoacetylene[13][25][74][123][124]51
HCC-NCIsocyanoacetylene[125]51
HCOOHFormic acid[126][123]46
NH2CNCyanamide[127][128]42
NH2OHHydroxylamine[129]37
Protonated cyanogen53NCCNH+[130]
HC(O)CNCyanoformaldehyde[131]55
C5Linear C5[132]60
SiC4Silicon-carbide cluster[50]92
SiH4Silane[133]32
In the ISM, formamide (above) can combine with methylene to form acetamide.[134]

Six atoms (16)[edit]

MoleculeDesignationMassIons
c-H2C3OCyclopropenone[135]54
E-HNCHCNE-Cyanomethanimine[136]54
C2H4Ethylene[137]28
CH3CNAcetonitrile[84][138][139]40
CH3NCMethyl isocyanide[138]40
CH3OHMethanol[84][140]32
CH3SHMethanethiol[141]48
l-H2C4Diacetylene[13][142]50
Protonated cyanoacetylene52HC3NH+[74]
HCONH2Formamide[134]44
C5HPentynylidyne[13][60]61
C5NCyanobutadiynyl radical[143]74
HC2CHOPropynal[144]54
HC4N[13] 63
CH2CNHKetenimine[116]40
C5S[145]92
Acetaldehyde (above) and its isomers vinyl alcohol and ethylene oxidehave all been detected in interstellar space.[146]

Seven atoms (13)[edit]

MoleculeDesignationMassIons
c-C2H4OEthylene oxide[147]44
CH3C2HMethylacetylene[25]40
H3CNH2Methylamine[148]31
CH2CHCNAcrylonitrile[84][138]53
H2CHCOHVinyl alcohol[146]44
C6HHexatriynyl radical[13][60]73C6H[117][149]
HC4CNCyanodiacetylene[84][124][138]75
HC4NCIsocyanodiacetylene[150]75
HC5O[151]77
CH3CHOAcetaldehyde[13][147]44
CH3NCOMethyl isocyanate[152]57
HOCH2CNGlycolonitrile[153]57
The radio signature of acetic acid, a compound found in vinegar, was confirmed in 1997.[154]

Eight atoms (12)[edit]

MoleculeDesignationMass
H3CC2CNMethylcyanoacetylene[155]65
HC3H2CNPropargyl cyanide[156]65
H2COHCHOGlycolaldehyde[157]60
HCOOCH3Methyl formate[84][123][157]60
CH3COOHAcetic acid[154]60
H2C6Hexapentaenylidene[13][142]74
CH2CHCHOPropenal[116]56
CH2CCHCNCyanoallene[116][155]65
CH3CHNHEthanimine[158]43
C7HHeptatrienyl radical[159]85
NH2CH2CNAminoacetonitrile[160]56
(NH2)2COUrea[161]60

Nine atoms (10)[edit]

MoleculeDesignationMassIons
CH3C4HMethyldiacetylene[162]64
CH3OCH3Dimethyl ether[163]46
CH3CH2CNPropionitrile[13][84][138]55
CH3CONH2Acetamide[116][134][128]59
CH3CH2OHEthanol[164]46
C8HOctatetraynyl radical[165]97C8H[166][167]
HC7NCyanohexatriyne or Cyanotriacetylene[13][107][168][169]99
CH3CHCH2Propylene (propene)[170]42
CH3CH2SHEthyl mercaptan[171]62
CH3NHCHON-methylformamide[128]
Diacetylene, HCCCCH
Methyldiacetylene, HCCCCCH3
Cyanotetraacetylene, HCCCCCCCCCN
A number of polyyne-derived chemicals are among the heaviest molecules found in the interstellar medium.

Ten or more atoms (17)[edit]

AtomsMoleculeDesignationMassIons
10(CH3)2COAcetone[84][172]58
10(CH2OH)2Ethylene glycol[173][174]62
10CH3CH2CHOPropanal[116]58
10CH3OCH2OHMethoxymethanol[175]62
10CH3C5NMethylcyanodiacetylene[116]89
10CH3CHCH2OPropylene oxide[176]58
11HC8CNCyanotetraacetylene[13][168]123
11C2H5OCHOEthyl formate[177]74
11CH3COOCH3Methyl acetate[178]74
11CH3C6HMethyltriacetylene[116][162]88
12C6H6Benzene[142]78
12C3H7CNn-Propyl cyanide[177]69
12(CH3)2CHCNiso-Propyl cyanide[179][180]69
13C
6
H
5
CN
Benzonitrile[181]104
13HC10CNCyanopentaacetylene[168]147
60C60Buckminsterfullerene
(C60 fullerene)
[182]
720C+
60
[183][184][185]
70C70C70 fullerene[182]840

Deuterated molecules (22)[edit]

These molecules all contain one or more deuterium atoms, a heavier isotope of hydrogen.

AtomsMoleculeDesignation
2HDHydrogen deuteride[186][187]
3H2D+HD+
2
Trihydrogen cation[186][187]
3HDO, D2OHeavy water[188][189]
3DCNHydrogen cyanide[190]
3DCOFormyl radical[190]
3DNCHydrogen isocyanide[190]
3N2D+[190] 
3NHD, ND2Amidogen[191] 
4NH2D, NHD2, ND3Ammonia[187][192][193]
4HDCO, D2COFormaldehyde[187][194]
4DNCOIsocyanic acid[195]
5NH3D+Ammonium ion[196][197]
6NH
2
CDO
; NHDCHO
Formamide[195]
7CH2DCCH, CH3CCDMethylacetylene[198][199]

Unconfirmed (12)[edit]

Evidence for the existence of the following molecules has been reported in the scientific literature, but the detections are either described as tentative by the authors, or have been challenged by other researchers. They await independent confirmation.

AtomsMoleculeDesignation
2SiHSilylidine[71]
4PH3Phosphine[200]
4MgCCHMagnesium monoacetylide[145]
4NCCPCyanophosphaethyne[145]
5H2NCO+[201]
4SiH3CNSilyl cyanide[145]
10H2NCH2COOHGlycine[202][203]
12CO(CH2OH)2Dihydroxyacetone[204][205]
12C2H5OCH3Ethyl methyl ether[206]
18C
10
H+
8
Naphthalene cation[207]
24C24Graphene[208]
24C14H10Anthracene[209][210]
26C16H10Pyrene[209]

See also[edit]

References[edit]

  1. ^ Shu, Frank H. (1982), The Physical Universe: An Introduction to Astronomy, University Science Books, ISBN 978-0-935702-05-7
  2. ^ Chaffee, Frederick H.; Lutz, Barry L.; Black, John H.; Vanden Bout, Paul A.; Snell, Ronald L. (1980). "Rotational fine-structure lines of interstellar C2 toward Zeta Persei". The Astrophysical Journal236: 474. Bibcode:1980ApJ...236..474Cdoi:10.1086/157764.
  3. Jump up to: a b c d McGuire, Brett A. (2018). "2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules". The Astrophysical Journal Supplement Series239 (2): 17. arXiv:1809.09132Bibcode:2018ApJS..239...17Mdoi:10.3847/1538-4365/aae5d2S2CID 119522774.
  4. ^ Woon, D. E. (May 2005), Methylidyne radical, The Astrochemist, retrieved 2007-02-13
  5. Jump up to: a b Carruthers, George R. (1970), "Rocket Observation of Interstellar Molecular Hydrogen", Astrophysical Journal161: L81–L85, Bibcode:1970ApJ...161L..81Cdoi:10.1086/180575
  6. ^ Tielens, A.G.G.M. (2008). "Interstellar Polycyclic Aromatic Hydrocarbon Molecules"Annual Review of Astronomy and Astrophysics46: 289–337. Bibcode:2008ARA&A..46..289Tdoi:10.1146/annurev.astro.46.060407.145211.
  7. ^ Cummins, S. E.; Linke, R. A.; Thaddeus, P. (1986), "A survey of the millimeter-wave spectrum of Sagittarius B2", Astrophysical Journal Supplement Series60: 819–878, Bibcode:1986ApJS...60..819Cdoi:10.1086/191102
  8. ^ Kaler, James B. (2002), The hundred greatest stars, Copernicus Series, Springer, ISBN 978-0-387-95436-3, retrieved 2011-05-09
  9. ^ Brown, Laurie M.; Pais, Abraham; Pippard, A. B. (1995), "The physics of the interstellar medium", Twentieth Century Physics (2nd ed.), CRC Press, p. 1765, ISBN 978-0-7503-0310-1
  10. ^ Dalgarno, A. (2006), "Interstellar Chemistry Special Feature: The galactic cosmic ray ionization rate", Proceedings of the National Academy of Sciences103 (33): 12269–12273, Bibcode:2006PNAS..10312269Ddoi:10.1073/pnas.0602117103PMC 1567869PMID 16894166
  11. Jump up to: a b Klemperer, William (2011), "Astronomical Chemistry", Annual Review of Physical Chemistry62: 173–184, Bibcode:2011ARPC...62..173Kdoi:10.1146/annurev-physchem-032210-103332PMID 21128763
  12. ^ The Structure of Molecular Cloud Cores, Centre for Astrophysics and Planetary Science, University of Kent, retrieved 2007-02-16
  13. Jump up to: a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak alZiurys, Lucy M. (2006), "The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life", Proceedings of the National Academy of Sciences103 (33): 12274–12279, Bibcode:2006PNAS..10312274Zdoi:10.1073/pnas.0602277103PMC 1567870PMID 16894164
  14. Jump up to: a b c Cernicharo, J.; Guelin, M. (1987), "Metals in IRC+10216 - Detection of NaCl, AlCl, and KCl, and tentative detection of AlF", Astronomy and Astrophysics183 (1): L10–L12, Bibcode:1987A&A...183L..10C
  15. ^ Ziurys, L. M.; Apponi, A. J.; Phillips, T. G. (1994), "Exotic fluoride molecules in IRC +10216: Confirmation of AlF and searches for MgF and CaF", Astrophysical Journal433 (2): 729–732, Bibcode:1994ApJ...433..729Zdoi:10.1086/174682
  16. ^ Tenenbaum, E. D.; Ziurys, L. M. (2009), "Millimeter Detection of AlO (X2Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris", Astrophysical Journal694 (1): L59–L63, Bibcode:2009ApJ...694L..59Tdoi:10.1088/0004-637X/694/1/L59
  17. ^ Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Lim, T. L.; Matsuura, M.; Miller, S.; Olofsson, G.; Polehampton, E. T. (2013), "Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula", Science342 (6164): 1343–1345, arXiv:1312.4843Bibcode:2013Sci...342.1343Bdoi:10.1126/science.1243582PMID 24337290S2CID 37578581
  18. ^ Quenqua, Douglas (13 December 2013). "Noble Molecules Found in Space"New York Times. Retrieved 13 December 2013.
  19. ^ Souza, S. P; Lutz, B. L (1977). "Detection of C2 in the interstellar spectrum of Cygnus OB2 number 12 /VI Cygni number 12/". The Astrophysical Journal216: L49. Bibcode:1977ApJ...216L..49Sdoi:10.1086/182507.
  20. ^ Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1995), "Hubble Space Telescope observations of C2 molecules in diffuse interstellar clouds", Astrophysical Journal438: 740–749, Bibcode:1995ApJ...438..740Ldoi:10.1086/175119
  21. ^ Neufeld, D. A.; et al. (2006), "Discovery of interstellar CF+", Astronomy and Astrophysics454 (2): L37–L40, arXiv:astro-ph/0603201Bibcode:2006A&A...454L..37Ndoi:10.1051/0004-6361:200600015S2CID 119471648
  22. ^ Landau, Elizabeth (12 October 2016). "Building Blocks of Life's Building Blocks Come From Starlight"NASA. Retrieved 13 October 2016.
  23. Jump up to: a b Adams, Walter S. (1941), "Some Results with the COUDÉ Spectrograph of the Mount Wilson Observatory", Astrophysical Journal93: 11–23, Bibcode:1941ApJ....93...11Adoi:10.1086/144237
  24. Jump up to: a b c d e f Smith, D. (1988), "Formation and Destruction of Molecular Ions in Interstellar Clouds", Philosophical Transactions of the Royal Society of London324 (1578): 257–273, Bibcode:1988RSPTA.324..257Sdoi:10.1098/rsta.1988.0016S2CID 120128881
  25. Jump up to: a b c d e f g Fuente, A.; et al. (2005), "Photon-dominated Chemistry in the Nucleus of M82: Widespread HOC+ Emission in the Inner 650 Parsec Disk", Astrophysical Journal619 (2): L155–L158, arXiv:astro-ph/0412361Bibcode:2005ApJ...619L.155Fdoi:10.1086/427990S2CID 14004275
  26. Jump up to: a b Guelin, M.; Cernicharo, J.; Paubert, G.; Turner, B. E. (1990), "Free CP in IRC + 10216", Astronomy and Astrophysics230: L9–L11, Bibcode:1990A&A...230L...9G
  27. Jump up to: a b c Dopita, Michael A.; Sutherland, Ralph S. (2003), Astrophysics of the diffuse universe, Springer-Verlag, ISBN 978-3-540-43362-0
  28. ^ Agúndez, M.; et al. (2010-07-30), "Astronomical identification of CN, the smallest observed molecular anion"Astronomy & Astrophysics517: L2, arXiv:1007.0662Bibcode:2010A&A...517L...2Adoi:10.1051/0004-6361/201015186S2CID 67782707, retrieved 2010-09-03
  29. ^ Khan, Amina. "Did two planets around nearby star collide? Toxic gas holds hints"LA Times. Retrieved March 9, 2014.
  30. ^ Dent, W.R.F.; Wyatt, M.C.;Roberge, A.; Augereau, J.-C.; Casassus, S.;Corder, S.; Greaves, J.S.; de Gregorio-Monsalvo, I; Hales, A.; Jackson, A.P.; Hughes, A. Meredith; Lagrange, A.-M; Matthews, B.; Wilner, D. (March 6, 2014). "Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk". Science343 (6178): 1490–1492. arXiv:1404.1380Bibcode:2014Sci...343.1490Ddoi:10.1126/science.1248726PMID 24603151S2CID 206553853.
  31. ^ Latter, W. B.; Walker, C. K.; Maloney, P. R. (1993), "Detection of the Carbon Monoxide Ion (CO+) in the Interstellar Medium and a Planetary Nebula", Astrophysical Journal Letters419: L97, Bibcode:1993ApJ...419L..97Ldoi:10.1086/187146
  32. ^ Furuya, R. S.; et al. (2003), "Interferometric observations of FeO towards Sagittarius B2", Astronomy and Astrophysics409 (2): L21–L24, Bibcode:2003A&A...409L..21Fdoi:10.1051/0004-6361:20031304
  33. ^ Fisher, Christine (17 April 2019). "NASA finally found evidence of the universe's earliest molecule - The elusive helium hydride was found 3,000 light-years away"Engadget. Retrieved 17 April 2018.
  34. ^ Güsten, Rolf; et al. (17 April 2019). "Astrophysical detection of the helium hydride ion HeH+". Nature568 (7752): 357–359. arXiv:1904.09581Bibcode:2019Natur.568..357Gdoi:10.1038/s41586-019-1090-xPMID 30996316S2CID 119548024.
  35. ^ Blake, G. A.; Keene, J.; Phillips, T. G. (1985), "Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1" (PDF)Astrophysical Journal, Part 1295: 501–506, Bibcode:1985ApJ...295..501Bdoi:10.1086/163394
  36. ^ De Luca, M.; Gupta, H.; Neufeld, D.; Gerin, M.; Teyssier, D.; Drouin, B. J.; Pearson, J. C.; Lis, D. C.; et al. (2012), "Herschel/HIFI Discovery of HCl+ in the Interstellar Medium", The Astrophysical Journal Letters751(2): L37, Bibcode:2012ApJ...751L..37Ddoi:10.1088/2041-8205/751/2/L37
  37. ^ Neufeld, David A.; et al. (1997), "Discovery of Interstellar Hydrogen Fluoride", Astrophysical Journal Letters488 (2): L141–L144, arXiv:astro-ph/9708013Bibcode:1997ApJ...488L.141Ndoi:10.1086/310942S2CID 14166201
  38. ^ Wyrowski, F.; et al. (2009), "First interstellar detection of OH+", Astronomy & Astrophysics518: A26, arXiv:1004.2627Bibcode:2010A&A...518A..26Wdoi:10.1051/0004-6361/201014364S2CID 119265403
  39. ^ Meyer, D. M.; Roth, K. C. (1991), "Discovery of interstellar NH", Astrophysical Journal Letters376: L49–L52, Bibcode:1991ApJ...376L..49Mdoi:10.1086/186100
  40. ^ Wagenblast, R.; et al. (January 1993), "On the origin of NH in diffuse interstellar clouds", Monthly Notices of the Royal Astronomical Society260 (2): 420–424, Bibcode:1993MNRAS.260..420Wdoi:10.1093/mnras/260.2.420
  41. ^ <Please add first missing authors to populate metadata.> (June 9, 2004), Astronomers Detect Molecular Nitrogen Outside Solar System, Space Daily, retrieved 2010-06-25
  42. ^ Knauth, D. C; et al. (2004), "The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations", Nature429 (6992): 636–638, Bibcode:2004Natur.429..636Kdoi:10.1038/nature02614PMID 15190346S2CID 4302582
  43. ^ McGonagle, D.; et al. (1990), "Detection of nitric oxide in the dark cloud L134N", Astrophysical Journal, Part 1359 (1 Pt 1): 121–124, Bibcode:1990ApJ...359..121Mdoi:10.1086/169040PMID 11538685
  44. ^ Staff writers (March 27, 2007), Elusive oxygen molecule finally discovered in interstellar space, Physorg.com, retrieved 2007-04-02
  45. ^ Turner, B. E.; Bally, John (1987). "Detection of interstellar PN - the first identified phosphorus compound in the interstellar medium". The Astrophysical Journal321: L75. Bibcode:1987ApJ...321L..75Tdoi:10.1086/185009.
  46. ^ Ziurys, L. M. (1987), "Detection of interstellar PN - The first phosphorus-bearing species observed in molecular clouds", Astrophysical Journal Letters321 (1 Pt 2): L81–L85, Bibcode:1987ApJ...321L..81Zdoi:10.1086/185010PMID 11542218
  47. ^ Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M. (2007), "Identification of phosphorus monoxide (X 2 Pi r) in VY Canis Majoris: Detection of the first PO bond in space", Astrophysical Journal Letters666 (1): L29–L32, Bibcode:2007ApJ...666L..29Tdoi:10.1086/521361
  48. ^ Yamamura, S. T.; Kawaguchi, K.; Ridgway, S. T. (2000), "Identification of SH v=1 Ro-vibrational Lines in R Andromedae", The Astrophysical Journal528 (1): L33–L36, arXiv:astro-ph/9911080Bibcode:2000ApJ...528L..33Ydoi:10.1086/312420PMID 10587489S2CID 32928458
  49. ^ Menten, K. M.; et al. (2011), "Submillimeter Absorption from SH+, a New Widespread Interstellar Radical, 13CH+ and HCl"Astronomy & Astrophysics525: A77, arXiv:1009.2825Bibcode:2011A&A...525A..77Mdoi:10.1051/0004-6361/201014363S2CID 119281811, archived from the original on 2011-07-19, retrieved 2010-12-03.
  50. Jump up to: a b c Pascoli, G.; Comeau, M. (1995), "Silicon Carbide in Circumstellar Environment", Astrophysics and Space Science226 (1): 149–163, Bibcode:1995Ap&SS.226..149Pdoi:10.1007/BF00626907S2CID 121702812
  51. ^ Turner, B. E. (1992). "Detection of SiN in IRC + 10216". The Astrophysical Journal388: L35. Bibcode:1992ApJ...388L..35Tdoi:10.1086/186324.
  52. Jump up to: a b Kamiński, T.; et al. (2013), "Pure rotational spectra of TiO and TiO2 in VY Canis Majoris", Astronomy and Astrophysics551: A113, arXiv:1301.4344Bibcode:2013A&A...551A.113Kdoi:10.1051/0004-6361/201220290S2CID 59038056
  53. Jump up to: a b Oka, Takeshi (2006), "Interstellar H3+", Proceedings of the National Academy of Sciences103 (33): 12235–12242, Bibcode:2006PNAS..10312235Odoi:10.1073/pnas.0601242103PMC 1567864PMID 16894171
  54. Jump up to: a b Geballe, T. R.; Oka, T. (1996), "Detection of H3+ in Interstellar Space", Nature384 (6607): 334–335, Bibcode:1996Natur.384..334Gdoi:10.1038/384334a0PMID 8934516S2CID 4370842
  55. ^ Tenenbaum, E. D.; Ziurys, L. M. (2010), "Exotic Metal Molecules in Oxygen-rich Envelopes: Detection of AlOH (X1Σ+) in VY Canis Majoris", Astrophysical Journal712 (1): L93–L97, Bibcode:2010ApJ...712L..93Tdoi:10.1088/2041-8205/712/1/L93
  56. ^ Hinkle, K. W; Keady, J. J; Bernath, P. F (1988). "Detection of C3 in the Circumstellar Shell of IRC+10216"Science241 (4871): 1319–22. Bibcode:1988Sci...241.1319Hdoi:10.1126/science.241.4871.1319PMID 17828935S2CID 40349500.
  57. ^ Maier, John P; Lakin, Nicholas M; Walker, Gordon A. H; Bohlender, David A (2001). "Detection of C3 in Diffuse Interstellar Clouds". The Astrophysical Journal553 (1): 267–273. arXiv:astro-ph/0102449Bibcode:2001ApJ...553..267Mdoi:10.1086/320668S2CID 14404584.
  58. ^ Anderson, J. K.; et al. (2014), "Detection of CCN (X2Πr) in IRC+10216: Constraining Carbon-chain Chemistry", Astrophysical Journal795 (1): L1, Bibcode:2014ApJ...795L...1Adoi:10.1088/2041-8205/795/1/L1
  59. ^ Ohishi, Masatoshi, Masatoshi; et al. (1991), "Detection of a new carbon-chain molecule, CCO", Astrophysical Journal Letters380: L39–L42, Bibcode:1991ApJ...380L..39Odoi:10.1086/186168PMID 11538087
  60. Jump up to: a b c d Irvine, William M.; et al. (1988), "Newly detected molecules in dense interstellar clouds", Astrophysical Letters and Communications26: 167–180, Bibcode:1988ApL&C..26..167IPMID 11538461
  61. ^ Halfen, D. T.; Clouthier, D. J.; Ziurys, L. M. (2008), "Detection of the CCP Radical (X 2Πr) in IRC +10216: A New Interstellar Phosphorus-containing Species", Astrophysical Journal677 (2): L101–L104, Bibcode:2008ApJ...677L.101Hdoi:10.1086/588024
  62. ^ Whittet, Douglas C. B.; Walker, H. J. (1991), "On the occurrence of carbon dioxide in interstellar grain mantles and ion-molecule chemistry", Monthly Notices of the Royal Astronomical Society252: 63–67, Bibcode:1991MNRAS.252...63Wdoi:10.1093/mnras/252.1.63
  63. ^ Cernicharo, J.; Velilla-Prieto, L.; Agúndez, M.; Pardo, J. R.; Fonfría, J. P.; Quintana-Lacaci, G.; Cabezas, C.; Bermúdez, C.; Guélin, M. (2019). "Discovery of the first Ca-bearing molecule in space: CaNC"Astronomy & Astrophysics627: L4. arXiv:1906.09352Bibcode:2019A&A...627L...4Cdoi:10.1051/0004-6361/201936040PMC 6640036PMID 31327871.
  64. ^ Zack, L. N.; Halfen, D. T.; Ziurys, L. M. (June 2011), "Detection of FeCN (X 4Δi) in IRC+10216: A New Interstellar Molecule", The Astrophysical Journal Letters733 (2): L36, Bibcode:2011ApJ...733L..36Zdoi:10.1088/2041-8205/733/2/L36
  65. ^ Hollis, J. M.; Jewell, P. R.; Lovas, F. J. (1995), "Confirmation of interstellar methylene", Astrophysical Journal, Part 1438: 259–264, Bibcode:1995ApJ...438..259Hdoi:10.1086/175070
  66. ^ Lis, D. C.; et al. (2010-10-01), "Herschel/HIFI discovery of interstellar chloronium (H2Cl+)", Astronomy & Astrophysics521: L9, arXiv:1007.1461Bibcode:2010A&A...521L...9Ldoi:10.1051/0004-6361/201014959S2CID 43898052.
  67. ^ "Europe's space telescope ISO finds water in distant places"XMM-Newton Press Release: 12, April 29, 1997, Bibcode:1997xmm..pres...12., archived from the original on December 22, 2006, retrieved 2007-02-08
  68. ^ Ossenkopf, V.; et al. (2010), "Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334", Astronomy & Astrophysics518: L111, arXiv:1005.2521Bibcode:2010A&A...518L.111Odoi:10.1051/0004-6361/201014577S2CID 85444481.
  69. ^ Parise, B.; Bergman, P.; Du, F. (2012), "Detection of the hydroperoxyl radical HO2 toward ρ Ophiuchi A. Additional constraints on the water chemical network", Astronomy & Astrophysics Letters541: L11–L14, arXiv:1205.0361Bibcode:2012A&A...541L..11Pdoi:10.1051/0004-6361/201219379S2CID 40297948
  70. ^ Snyder, L. E.; Buhl, D. (1971), "Observations of Radio Emission from Interstellar Hydrogen Cyanide", Astrophysical Journal163: L47–L52, Bibcode:1971ApJ...163L..47Sdoi:10.1086/180664
  71. Jump up to: a b Schilke, P.; Benford, D. J.; Hunter, T. R.; Lis, D. C., Phillips, T. G.; Phillips, T. G. (2001), "A Line Survey of Orion-KL from 607 to 725 GHz", Astrophysical Journal Supplement Series132 (2): 281–364, Bibcode:2001ApJS..132..281Sdoi:10.1086/318951
  72. ^ Schilke, P.; Comito, C.; Thorwirth, S. (2003), "First Detection of Vibrationally Excited HNC in Space", The Astrophysical Journal582 (2): L101–L104, Bibcode:2003ApJ...582L.101Sdoi:10.1086/367628
  73. Jump up to: a b Schenewerk, M. S.; Snyder, L. E.; Hjalmarson, A. (1986), "Interstellar HCO - Detection of the missing 3 millimeter quartet", Astrophysical Journal Letters303: L71–L74, Bibcode:1986ApJ...303L..71Sdoi:10.1086/184655
  74. Jump up to: a b c d e f Kawaguchi, Kentarou; et al. (1994), "Detection of a new molecular ion HC3NH(+) in TMC-1", Astrophysical Journal420: L95, Bibcode:1994ApJ...420L..95Kdoi:10.1086/187171
  75. ^ Agúndez, M.; Cernicharo, J.; Guélin, M. (2007), "Discovery of Phosphaethyne (HCP) in Space: Phosphorus Chemistry in Circumstellar Envelopes", The Astrophysical Journal662 (2): L91, Bibcode:2007ApJ...662L..91Adoi:10.1086/519561hdl:10261/191973
  76. Jump up to: a b Agúndez, M; Marcelino, N; Cernicharo, J; Tafalla, M (2018). "Detection of interstellar HCS and its metastable isomer HSC: New pieces in the puzzle of sulfur chemistry"Astronomy & Astrophysics611: L1. arXiv:1802.09401Bibcode:2018A&A...611L...1Adoi:10.1051/0004-6361/201832743PMC 6031296PMID 29983448.
  77. ^ Womack, M.; Ziurys, L. M.; Wyckoff, S. (1992), "A survey of N2H(+) in dense clouds - Implications for interstellar nitrogen and ion-molecule chemistry", Astrophysical Journal, Part 1387: 417–429, Bibcode:1992ApJ...387..417Wdoi:10.1086/171094
  78. ^ Hollis, J. M.; et al. (1991), "Interstellar HNO: Confirming the Identification - Atoms, ions and molecules: New results in spectral line astrophysics", Atoms16: 407–412, Bibcode:1991ASPC...16..407H
  79. ^ van Dishoeck, Ewine F.; et al. (1993), "Detection of the Interstellar NH 2 Radical", Astrophysical Journal Letters416: L83–L86, Bibcode:1993ApJ...416L..83Vdoi:10.1086/187076hdl:1887/2194
  80. ^ Ziurys, L. M.; et al. (1994), "Detection of interstellar N2O: A new molecule containing an N-O bond", Astrophysical Journal Letters436: L181–L184, Bibcode:1994ApJ...436L.181Zdoi:10.1086/187662
  81. ^ Hollis, J. M.; Rhodes, P. J. (November 1, 1982), "Detection of interstellar sodium hydroxide in self-absorption toward the galactic center", Astrophysical Journal Letters262: L1–L5, Bibcode:1982ApJ...262L...1Hdoi:10.1086/183900
  82. ^ Goldsmith, P. F.; Linke, R. A. (1981), "A study of interstellar carbonyl sulfide", Astrophysical Journal, Part 1245: 482–494, Bibcode:1981ApJ...245..482Gdoi:10.1086/158824
  83. ^ Phillips, T. G.; Knapp, G. R. (1980), "Interstellar Ozone", American Astronomical Society Bulletin12: 440, Bibcode:1980BAAS...12..440P
  84. Jump up to: a b c d e f g h i j Johansson, L. E. B.; et al. (1984), "Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz", Astronomy and Astrophysics130(2): 227–256, Bibcode:1984A&A...130..227J
  85. ^ Cernicharo, José; et al. (2015), "Discovery of SiCSi in IRC+10216: a Missing Link Between Gas and Dust Carriers OF Si–C Bonds", Astrophysical Journal Letters806 (1): L3, arXiv:1505.01633Bibcode:2015ApJ...806L...3Cdoi:10.1088/2041-8205/806/1/L3PMC 4693961PMID 26722621
  86. ^ Guélin, M.; et al. (2004), "Astronomical detection of the free radical SiCN", Astronomy and Astrophysics363: L9–L12, Bibcode:2000A&A...363L...9G
  87. ^ Guélin, M.; et al. (2004), "Detection of the SiNC radical in IRC+10216", Astronomy and Astrophysics426 (2): L49–L52, Bibcode:2004A&A...426L..49Gdoi:10.1051/0004-6361:200400074
  88. Jump up to: a b Snyder, Lewis E.; et al. (1999), "Microwave Detection of Interstellar Formaldehyde", Physical Review Letters61 (2): 77–115, Bibcode:1969PhRvL..22..679Sdoi:10.1103/PhysRevLett.22.679
  89. ^ Feuchtgruber, H.; et al. (June 2000), "Detection of Interstellar CH3", The Astrophysical Journal535 (2): L111–L114, arXiv:astro-ph/0005273Bibcode:2000ApJ...535L.111Fdoi:10.1086/312711PMID 10835311S2CID 9194055
  90. Jump up to: a b Irvine, W. M.; et al. (1984), "Confirmation of the Existence of Two New Interstellar Molecules: C3H and C3O", Bulletin of the American Astronomical Society16: 877, Bibcode:1984BAAS...16..877I
  91. ^ Pety, J.; et al. (2012), "The IRAM-30 m line survey of the Horsehead PDR. II. First detection of the l-C3MH+ hydrocarbon cation", Astronomy & Astrophysics548: A68, arXiv:1210.8178Bibcode:2012A&A...548A..68Pdoi:10.1051/0004-6361/201220062S2CID 56425162
  92. ^ Mangum, J. G.; Wootten, A. (1990), "Observations of the cyclic C3H radical in the interstellar medium", Astronomy and Astrophysics239: 319–325, Bibcode:1990A&A...239..319M
  93. ^ Bell, M. B.; Matthews, H. E. (1995), "Detection of C3N in the spiral arm gas clouds in the direction of Cassiopeia A", Astrophysical Journal, Part 1438: 223–225, Bibcode:1995ApJ...438..223Bdoi:10.1086/175066
  94. ^ Thaddeus, P.; et al. (2008), "Laboratory and Astronomical Detection of the Negative Molecular Ion C3N-", The Astrophysical Journal677 (2): 1132–1139, Bibcode:2008ApJ...677.1132Tdoi:10.1086/528947
  95. ^ Wootten, Alwyn; et al. (1991), "Detection of interstellar H3O(+) - A confirming line", Astrophysical Journal Letters380: L79–L83, Bibcode:1991ApJ...380L..79Wdoi:10.1086/186178
  96. ^ Ridgway, S. T.; et al. (1976), "Circumstellar acetylene in the infrared spectrum of IRC+10216", Nature264 (5584): 345, 346, Bibcode:1976Natur.264..345Rdoi:10.1038/264345a0S2CID 4181772
  97. ^ Ohishi, Masatoshi; et al. (1994), "Detection of a new interstellar molecule, H2CN", Astrophysical Journal Letters427 (1): L51–L54, Bibcode:1994ApJ...427L..51Odoi:10.1086/187362PMID 11539493
  98. ^ Minh, Y. C.; Irvine, W. M.; Brewer, M. K. (1991), "H2CS abundances and ortho-to-para ratios in interstellar clouds", Astronomy and Astrophysics244: 181–189, Bibcode:1991A&A...244..181MPMID 11538284
  99. ^ Guelin, M.; Cernicharo, J. (1991), "Astronomical detection of the HCCN radical - Toward a new family of carbon-chain molecules?", Astronomy and Astrophysics244: L21–L24, Bibcode:1991A&A...244L..21G
  100. ^ Agúndez, M.; et al. (2015), "Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical", Astronomy and Astrophysics577: L5, arXiv:1504.05721Bibcode:2015A&A...577L...5Adoi:10.1051/0004-6361/201526317PMC 4693959PMID 26722130
  101. ^ Minh, Y. C.; Irvine, W. M.; Ziurys, L. M. (1988), "Observations of interstellar HOCO(+) - Abundance enhancements toward the Galactic center", Astrophysical Journal, Part 1334 (1): 175–181, Bibcode:1988ApJ...334..175Mdoi:10.1086/166827PMID 11538465
  102. ^ Marcelino, Núria; et al. (2009), "Discovery of fulminic acid, HCNO, in dark clouds", Astrophysical Journal690 (1): L27–L30, arXiv:0811.2679Bibcode:2009ApJ...690L..27Mdoi:10.1088/0004-637X/690/1/L27S2CID 16009836
  103. ^ Brünken, S.; et al. (2010-07-22), "Interstellar HOCN in the Galactic center region", Astronomy & Astrophysics516: A109, arXiv:1005.2489Bibcode:2010A&A...516A.109Bdoi:10.1051/0004-6361/200912456S2CID 55371600
  104. ^ Agúndez, M; Marcelino, N; Cernicharo, J (2018). "Discovery of Interstellar Isocyanogen (CNCN): Further Evidence that Dicyanopolyynes Are Abundant in Space"The Astrophysical Journal861 (2): L22. arXiv:1806.10328Bibcode:2018ApJ...861L..22Adoi:10.3847/2041-8213/aad089PMC 6120679PMID 30186588.
  105. ^ Bergman; Parise; Liseau; Larsson; Olofsson; Menten; Güsten (2011), "Detection of interstellar hydrogen peroxide", Astronomy & Astrophysics531: L8, arXiv:1105.5799Bibcode:2011A&A...531L...8Bdoi:10.1051/0004-6361/201117170S2CID 54611741.
  106. ^ Frerking, M. A.; Linke, R. A.; Thaddeus, P. (1979), "Interstellar isothiocyanic acid", Astrophysical Journal Letters234: L143–L145, Bibcode:1979ApJ...234L.143Fdoi:10.1086/183126
  107. Jump up to: a b Nguyen-Q-Rieu; Graham, D.; Bujarrabal, V. (1984), "Ammonia and cyanotriacetylene in the envelopes of CRL 2688 and IRC + 10216", Astronomy and Astrophysics138 (1): L5–L8, Bibcode:1984A&A...138L...5N
  108. ^ Halfen, D. T.; et al. (September 2009), "Detection of a New Interstellar Molecule: Thiocyanic Acid HSCN", The Astrophysical Journal Letters702(2): L124–L127, Bibcode:2009ApJ...702L.124Hdoi:10.1088/0004-637X/702/2/L124
  109. ^ Cabezas, C.; et al. (2013), "Laboratory and Astronomical Discovery of Hydromagnesium Isocyanide", Astrophysical Journal775 (2): 133, arXiv:1309.0371Bibcode:2013ApJ...775..133Cdoi:10.1088/0004-637X/775/2/133S2CID 118694017
  110. ^ Coutens, A.; Ligterink, N. F. W.; Loison, J.-C.; Wakelam, V.; Calcutt, H.; Drozdovskaya, M. N.; Jørgensen, J. K.; Müller, H. S. P.; Van Dishoeck, E. F.; Wampfler, S. F. (2019). "The ALMA-PILS survey: First detection of nitrous acid (HONO) in the interstellar medium". Astronomy & Astrophysics623: L13. arXiv:1903.03378Bibcode:2019A&A...623L..13Cdoi:10.1051/0004-6361/201935040S2CID 119274002.
  111. ^ Butterworth, Anna L.; et al. (2004), "Combined element (H and C) stable isotope ratios of methane in carbonaceous chondrites", Monthly Notices of the Royal Astronomical Society347 (3): 807–812, Bibcode:2004MNRAS.347..807Bdoi:10.1111/j.1365-2966.2004.07251.x
  112. ^ "NH4+ in the ISM". Archived from the original on 2015-05-26. Retrieved 2013-08-29.
  113. ^ Detection Of The Ammonium Ion In Space - Iopscience
  114. ^ Lacy, J. H.; et al. (1991), "Discovery of interstellar methane - Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds", Astrophysical Journal376: 556–560, Bibcode:1991ApJ...376..556Ldoi:10.1086/170304
  115. ^ Cernicharo, J.; Marcelino, N.; Roueff, E.; Gerin, M.; Jiménez-Escobar, A.; Muñoz Caro, G. M. (2012), "Discovery of the Methoxy Radical, CH3O, toward B1: Dust Grain and Gas-phase Chemistry in Cold Dark Clouds", The Astrophysical Journal Letters759 (2): L43–L46, Bibcode:2012ApJ...759L..43Cdoi:10.1088/2041-8205/759/2/L43
  116. Jump up to: a b c d e f g h Finley, Dave (August 7, 2006), "Researchers Use NRAO Telescope to Study Formation Of Chemical Precursors to Life"NRAO Press Release: 9, Bibcode:2006nrao.pres....9., retrieved 2006-08-10
  117. Jump up to: a b c Fossé, David; et al. (2001), "Molecular Carbon Chains and Rings in TMC-1", Astrophysical Journal552 (1): 168–174, arXiv:astro-ph/0012405Bibcode:2001ApJ...552..168Fdoi:10.1086/320471S2CID 16107034
  118. ^ Irvine, W. M.; et al. (1988), "Identification of the interstellar cyanomethyl radical (CH2CN) in the molecular clouds TMC-1 and Sagittarius B2", Astrophysical Journal Letters334 (2): L107–L111, Bibcode:1988ApJ...334L.107Idoi:10.1086/185323PMID 11538463
  119. ^ Dickens, J. E.; et al. (1997), "Hydrogenation of Interstellar Molecules: A Survey for Methylenimine (CH2NH)", Astrophysical Journal479 (1 Pt 1): 307–12, Bibcode:1997ApJ...479..307Ddoi:10.1086/303884PMID 11541227
  120. ^ McGuire, B.A.; et al. (2012), "Interstellar Carbodiimide (HNCNH): A New Astronomical Detection from the GBT PRIMOS Survey via Maser Emission Features", The Astrophysical Journal Letters758 (2): L33–L38, arXiv:1209.1590Bibcode:2012ApJ...758L..33Mdoi:10.1088/2041-8205/758/2/L33S2CID 26146516
  121. ^ Ohishi, Masatoshi; et al. (1996), "Detection of a New Interstellar Molecular Ion, H2COH+ (Protonated Formaldehyde)", Astrophysical Journal471 (1): L61–4, Bibcode:1996ApJ...471L..61Odoi:10.1086/310325PMID 11541244
  122. ^ Cernicharo, J.; et al. (2007), "Astronomical detection of C4H, the second interstellar anion", Astronomy and Astrophysics61 (2): L37–L40, Bibcode:2007A&A...467L..37Cdoi:10.1051/0004-6361:20077415
  123. Jump up to: a b c Liu, S.-Y.; Mehringer, D. M.; Snyder, L. E. (2001), "Observations of Formic Acid in Hot Molecular Cores", Astrophysical Journal552 (2): 654–663, Bibcode:2001ApJ...552..654Ldoi:10.1086/320563
  124. Jump up to: a b Walmsley, C. M.; Winnewisser, G.; Toelle, F. (1990), "Cyanoacetylene and cyanodiacetylene in interstellar clouds", Astronomy and Astrophysics81 (1–2): 245–250, Bibcode:1980A&A....81..245W
  125. ^ Kawaguchi, Kentarou; et al. (1992), "Detection of isocyanoacetylene HCCNC in TMC-1", Astrophysical Journal386 (2): L51–L53, Bibcode:1992ApJ...386L..51Kdoi:10.1086/186290
  126. ^ Zuckerman, B.; Ball, John A.; Gottlieb, Carl A. (1971). "Microwave Detection of Interstellar Formic Acid". Astrophysical Journal163: L41. Bibcode:1971ApJ...163L..41Zdoi:10.1086/180663.
  127. ^ Turner, B. E.; et al. (1975), "Microwave detection of interstellar cyanamide", Astrophysical Journal201: L149–L152, Bibcode:1975ApJ...201L.149Tdoi:10.1086/181963
  128. Jump up to: a b c Ligterink, Niels F. W.; et al. (September 2020). "The Family of Amide Molecules toward NGC 6334I". The Astrophysical Journal901 (1): 23. arXiv:2008.09157Bibcode:2020ApJ...901...37Ldoi:10.3847/1538-4357/abad38S2CID 221246432. 37.
  129. ^ Rivilla, Víctor M.; Martín-Pintado, Jesús; Jiménez-Serra, Izaskun; Martín, Sergio; Rodríguez-Almeida, Lucas F.; Requena-Torres, Miguel A.; Rico-Villas, Fernando; Zeng, Shaoshan; Briones, Carlos (2020). "Prebiotic Precursors of the Primordial RNA World in Space: Detection of NH2OH". The Astrophysical Journal899 (2): L28. arXiv:2008.00228Bibcode:2020ApJ...899L..28Rdoi:10.3847/2041-8213/abac55S2CID 220935710.
  130. ^ Agúndez, M.; et al. (2015), "Probing non-polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+)", Astronomy and Astrophysics579: L10, arXiv:1506.07043Bibcode:2015A&A...579L..10Adoi:10.1051/0004-6361/201526650PMC 4630856PMID 26543239
  131. ^ Remijan, Anthony J.; et al. (2008), "Detection of interstellar cyanoformaldehyde (CNCHO)", Astrophysical Journal675 (2): L85–L88, Bibcode:2008ApJ...675L..85Rdoi:10.1086/533529
  132. ^ Bernath, P. F; Hinkle, K. H; Keady, J. J (1989). "Detection of C5 in the Circumstellar Shell of IRC+10216"Science244 (4904): 562–4. Bibcode:1989Sci...244..562Bdoi:10.1126/science.244.4904.562PMID 17769400S2CID 20960839.
  133. ^ Goldhaber, D. M.; Betz, A. L. (1984), "Silane in IRC +10216", Astrophysical Journal Letters279: –L55–L58, Bibcode:1984ApJ...279L..55Gdoi:10.1086/184255
  134. Jump up to: a b c Hollis, J. M.; et al. (2006), "Detection of Acetamide (CH3CONH2): The Largest Interstellar Molecule with a Peptide Bond"Astrophysical Journal643 (1): L25–L28, Bibcode:2006ApJ...643L..25Hdoi:10.1086/505110
  135. ^ Hollis, J. M.; et al. (2006), "Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule", Astrophysical Journal642 (2): 933–939, Bibcode:2006ApJ...642..933Hdoi:10.1086/501121
  136. ^ Zaleski, D. P.; et al. (2013), "Detection of E-Cyanomethanimine toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey", Astrophysical Journal Letters765 (1): L109, arXiv:1302.0909Bibcode:2013ApJ...765L..10Zdoi:10.1088/2041-8205/765/1/L10S2CID 53552345
  137. ^ Betz, A. L. (1981), "Ethylene in IRC +10216", Astrophysical Journal Letters244: –L105, Bibcode:1981ApJ...244L.103Bdoi:10.1086/183490
  138. Jump up to: a b c d e Remijan, Anthony J.; et al. (2005), "Interstellar Isomers: The Importance of Bonding Energy Differences", Astrophysical Journal632(1): 333–339, arXiv:astro-ph/0506502Bibcode:2005ApJ...632..333Rdoi:10.1086/432908S2CID 15244867
  139. ^ "Complex Organic Molecules Discovered in Infant Star System"NRAO. Astrobiology Web. 8 April 2015. Retrieved 2015-04-09.
  140. ^ First Detection of Methyl Alcohol in a Planet-forming Disc. 15 June 2016.
  141. ^ Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1979), "Interstellar methyl mercaptan", Astrophysical Journal Letters234: L139–L142, Bibcode:1979ApJ...234L.139Ldoi:10.1086/183125
  142. Jump up to: a b c Cernicharo, José; et al. (1997), "Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618", Astrophysical Journal Letters546 (2): L123–L126, Bibcode:2001ApJ...546L.123Cdoi:10.1086/318871
  143. ^ Guelin, M.; Neininger, N.; Cernicharo, J. (1998), "Astronomical detection of the cyanobutadiynyl radical C_5N", Astronomy and Astrophysics335: L1–L4, arXiv:astro-ph/9805105Bibcode:1998A&A...335L...1G
  144. ^ Irvine, W. M.; et al. (1988), "A new interstellar polyatomic molecule - Detection of propynal in the cold cloud TMC-1", Astrophysical Journal Letters335 (2): L89–L93, Bibcode:1988ApJ...335L..89Idoi:10.1086/185346PMID 11538462
  145. Jump up to: a b c d Agúndez, M.; et al. (2014), "New molecules in IRC +10216: confirmation of C5S and tentative identification of MgCCH, NCCP, and SiH3CN", Astronomy and Astrophysics570: A45, arXiv:1408.6306Bibcode:2014A&A...570A..45Adoi:10.1051/0004-6361/201424542S2CID 118440180
  146. Jump up to: a b "Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space"NRAO Press Release: 16, October 1, 2001, Bibcode:2001nrao.pres...16., retrieved 2006-12-20
  147. Jump up to: a b Dickens, J. E.; et al. (1997), "Detection of Interstellar Ethylene Oxide (c-C2H4O)", The Astrophysical Journal489 (2): 753–757, Bibcode:1997ApJ...489..753Ddoi:10.1086/304821PMID 11541726
  148. ^ Kaifu, N.; Takagi, K.; Kojima, T. (1975), "Excitation of interstellar methylamine", Astrophysical Journal198: L85–L88, Bibcode:1975ApJ...198L..85Kdoi:10.1086/181818
  149. ^ McCarthy, M. C.; et al. (2006), "Laboratory and Astronomical Identification of the Negative Molecular Ion C6H", Astrophysical Journal652 (2): L141–L144, Bibcode:2006ApJ...652L.141Mdoi:10.1086/510238
  150. ^ Xue, Ci; Willis, Eric R.; Loomis, Ryan A.; Kelvin Lee, Kin Long; Burkhardt, Andrew M.; Shingledecker, Christopher N.; Charnley, Steven B.; Cordiner, Martin A.; Kalenskii, Sergei; McCarthy, Michael C.; Herbst, Eric; Remijan, Anthony J.; McGuire, Brett A. (2020). "Detection of Interstellar HC4NC and an Investigation of Isocyanopolyyne Chemistry under TMC-1 Conditions". The Astrophysical Journal900 (1): L9. arXiv:2008.12345Bibcode:2020ApJ...900L...9Xdoi:10.3847/2041-8213/aba631S2CID 221370815.
  151. ^ McGuire, Brett A; Burkhardt, Andrew M; Shingledecker, Christopher N; Kalenskii, Sergei V; Herbst, Eric; Remijan, Anthony J; McCarthy, Michael C (2017). "Detection of Interstellar HC5O in TMC-1 with the Green Bank Telescope". The Astrophysical Journal843 (2): L28. arXiv:1706.09766Bibcode:2017ApJ...843L..28Mdoi:10.3847/2041-8213/aa7ca3S2CID 119189492.
  152. ^ Halfven, D. T.; et al. (2015), "Interstellar Detection of Methyl Isocyanate CH3NCO in Sgr B2(N): A Link from Molecular Clouds to Comets", Astrophysical Journal812 (1): L5, arXiv:1509.09305Bibcode:2015ApJ...812L...5Hdoi:10.1088/2041-8205/812/1/L5S2CID 119191839
  153. ^ Zeng, S.; Quénard, D.; Jiménez-Serra, I.; Martín-Pintado, J.; Rivilla, V. M.; Testi, L.; Martín-Doménech, R. (2019). "First detection of the pre-biotic molecule glycolonitrile (HOCH2CN) in the interstellar medium". Monthly Notices of the Royal Astronomical Society: Letters484 (1): L43–L48. arXiv:1901.02576Bibcode:2019MNRAS.484L..43Zdoi:10.1093/mnrasl/slz002S2CID 119382820.
  154. Jump up to: a b Mehringer, David M.; et al. (1997), "Detection and Confirmation of Interstellar Acetic Acid", Astrophysical Journal Letters480 (1): L71, Bibcode:1997ApJ...480L..71Mdoi:10.1086/310612
  155. Jump up to: a b Lovas, F. J.; et al. (2006), "Hyperfine Structure Identification of Interstellar Cyanoallene toward TMC-1", Astrophysical Journal Letters637 (1): L37–L40, Bibcode:2006ApJ...637L..37Ldoi:10.1086/500431
  156. ^ McGuire, Brett A.; Burkhardt, Andrew M.; Loomis, Ryan A.; Shingledecker, Christopher N.; Kelvin Lee, Kin Long; Charnley, Steven B.; Cordiner, Martin A.; Herbst, Eric; Kalenskii, Sergei; Momjian, Emmanuel; Willis, Eric R.; Xue, Ci; Remijan, Anthony J.; McCarthy, Michael C. (2020). "Early Science from GOTHAM: Project Overview, Methods, and the Detection of Interstellar Propargyl Cyanide (HCCCH2CN) in TMC-1". The Astrophysical Journal900 (1): L10. arXiv:2008.12349Bibcode:2020ApJ...900L..10Mdoi:10.3847/2041-8213/aba632S2CID 221370721.
  157. Jump up to: a b Sincell, Mark (June 27, 2006), "The Sweet Signal of Sugar in Space"ScienceAmerican Association for the Advancement of Science, retrieved 2016-01-14
  158. ^ Loomis, R. A.; et al. (2013), "The Detection of Interstellar Ethanimine CH3CHNH) from Observations Taken during the GBT PRIMOS Survey", Astrophysical Journal Letters765 (1): L9, arXiv:1302.1121Bibcode:2013ApJ...765L...9Ldoi:10.1088/2041-8205/765/1/L9S2CID 118522676
  159. ^ Guelin, M.; et al. (1997), "Detection of a new linear carbon chain radical: C7H", Astronomy and Astrophysics317: L37–L40, Bibcode:1997A&A...317L...1G
  160. ^ Belloche, A.; et al. (2008), "Detection of amino acetonitrile in Sgr B2(N)", Astronomy & Astrophysics482 (1): 179–196, arXiv:0801.3219Bibcode:2008A&A...482..179Bdoi:10.1051/0004-6361:20079203S2CID 21809828
  161. ^ Remijan, Anthony J.; et al. (2014), "Observational Results of a Multi-telescope Campaign in Search of Interstellar Urea [(NH2)2CO]", Astrophysical Journal783 (2): 77, arXiv:1401.4483Bibcode:2014ApJ...783...77Rdoi:10.1088/0004-637X/783/2/77S2CID 13902461
  162. Jump up to: a b Remijan, Anthony J.; et al. (2006), "Methyltriacetylene (CH3C6H) toward TMC-1: The Largest Detected Symmetric Top", Astrophysical Journal643 (1): L37–L40, Bibcode:2006ApJ...643L..37Rdoi:10.1086/504918
  163. ^ Snyder, L. E.; et al. (1974), "Radio Detection of Interstellar Dimethyl Ether", Astrophysical Journal191: L79–L82, Bibcode:1974ApJ...191L..79Sdoi:10.1086/181554
  164. ^ Zuckerman, B.; et al. (1975), "Detection of interstellar trans-ethyl alcohol", Astrophysical Journal196 (2): L99–L102, Bibcode:1975ApJ...196L..99Zdoi:10.1086/181753
  165. ^ Cernicharo, J.; Guelin, M. (1996), "Discovery of the C8H radical", Astronomy and Astrophysics309: L26–L30, Bibcode:1996A&A...309L..27C
  166. ^ Brünken, S.; et al. (2007), "Detection of the Carbon Chain Negative Ion C8H in TMC-1", Astrophysical Journal664 (1): L43–L46, Bibcode:2007ApJ...664L..43Bdoi:10.1086/520703
  167. ^ Remijan, Anthony J.; et al. (2007), "Detection of C8H and Comparison with C8H toward IRC +10 216" (PDF)Astrophysical Journal664 (1): L47–L50, Bibcode:2007ApJ...664L..47Rdoi:10.1086/520704
  168. Jump up to: a b c Bell, M. B.; et al. (1997), "Detection of HC11N in the Cold Dust Cloud TMC-1", Astrophysical Journal Letters483 (1): L61–L64, arXiv:astro-ph/9704233Bibcode:1997ApJ...483L..61Bdoi:10.1086/310732S2CID 119459042
  169. ^ Kroto, H. W.; et al. (1978), "The detection of cyanohexatriyne, H (C≡ C)3CN, in Heiles's cloud 2", The Astrophysical Journal219: L133–L137, Bibcode:1978ApJ...219L.133Kdoi:10.1086/182623
  170. ^ Marcelino, N.; et al. (2007), "Discovery of Interstellar Propylene (CH2CHCH3): Missing Links in Interstellar Gas-Phase Chemistry", Astrophysical Journal665 (2): L127–L130, arXiv:0707.1308Bibcode:2007ApJ...665L.127Mdoi:10.1086/521398S2CID 15832967
  171. ^ Kolesniková, L.; et al. (2014), "Spectroscopic Characterization and Detection of Ethyl Mercaptan in Orion", Astrophysical Journal Letters784(1): L7, arXiv:1401.7810Bibcode:2014ApJ...784L...7Kdoi:10.1088/2041-8205/784/1/L7S2CID 119115343
  172. ^ Snyder, Lewis E.; et al. (2002), "Confirmation of Interstellar Acetone", The Astrophysical Journal578 (1): 245–255, Bibcode:2002ApJ...578..245Sdoi:10.1086/342273
  173. ^ Hollis, J. M.; et al. (2002), "Interstellar Antifreeze: Ethylene Glycol", Astrophysical Journal571 (1): L59–L62, Bibcode:2002ApJ...571L..59Hdoi:10.1086/341148
  174. ^ Hollis, J. M. (2005), "Complex Molecules and the GBT: Is Isomerism the Key?" (PDF)Complex Molecules and the GBT: Is Isomerism the Key?, Proceedings of the IAU Symposium 231, Astrochemistry throughout the Universe, Asilomar, CA, pp. 119–127
  175. ^ McGuire, Brett A; Shingledecker, Christopher N; Willis, Eric R; Burkhardt, Andrew M; El-Abd, Samer; Motiyenko, Roman A; Brogan, Crystal L; Hunter, Todd R; Margulès, Laurent; Guillemin, Jean-Claude; Garrod, Robin T; Herbst, Eric; Remijan, Anthony J (2017). "ALMA Detection of Interstellar Methoxymethanol (CH3OCH2OH)". The Astrophysical Journal851 (2): L46. arXiv:1712.03256Bibcode:2017ApJ...851L..46Mdoi:10.3847/2041-8213/aaa0c3S2CID 119211919.
  176. ^ McGuire, B. A.; Carroll, P. B.; Loomis, R. A.; Finneran, I. A.; Jewell, P. R.; Remijan, A. J.; Blake, G. A. (2016). "Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O)". Science352 (6292): 1449–52. arXiv:1606.07483Bibcode:2016Sci...352.1449Mdoi:10.1126/science.aae0328PMID 27303055S2CID 23838503.
  177. Jump up to: a b Belloche, A.; et al. (May 2009), "Increased complexity in interstellar chemistry: Detection and chemical modeling of ethyl formate and n-propyl cyanide in Sgr B2(N)", Astronomy and Astrophysics499 (1): 215–232, arXiv:0902.4694Bibcode:2009A&A...499..215Bdoi:10.1051/0004-6361/200811550S2CID 98625608
  178. ^ Tercero, B.; et al. (2013), "Discovery of Methyl Acetate and Gauche Ethyl Formate in Orion", Astrophysical Journal Letters770 (1): L13, arXiv:1305.1135Bibcode:2013ApJ...770L..13Tdoi:10.1088/2041-8205/770/1/L13S2CID 119251272
  179. ^ Eyre, Michael (26 September 2014). "Complex organic molecule found in interstellar space"BBC News. Retrieved 2014-09-26.
  180. ^ Belloche, Arnaud; Garrod, Robin T.; Müller, Holger S. P.; Menten, Karl M. (26 September 2014). "Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide". Science345 (6204): 1584–1587. arXiv:1410.2607Bibcode:2014Sci...345.1584Bdoi:10.1126/science.1256678PMID 25258074S2CID 14573206.
  181. ^ McGuire, Brett A.; Burkhardt, Andrew M.; Kalenskii, Sergei; Shingledecker, Christopher N.; Remijan, Anthony J.; Herbst, Eric; McCarthy, Michael C. (12 January 2018). "Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium". Science359 (6372): 202–205. arXiv:1801.04228Bibcode:2018Sci...359..202Mdoi:10.1126/science.aao4890PMID 29326270S2CID 206663501.
  182. Jump up to: a b Cami, Jan; et al. (July 22, 2010), "Detection of C60 and C70 in a Young Planetary Nebula", Science329 (5996): 1180–2, Bibcode:2010Sci...329.1180Cdoi:10.1126/science.1192035PMID 20651118S2CID 33588270
  183. ^ Foing, B. H.; Ehrenfreund, P. (1994), "Detection of two interstellar absorption bands coincident with spectral features of C60+", Nature369(6478): 296–298, Bibcode:1994Natur.369..296Fdoi:10.1038/369296a0S2CID 4354516.
  184. ^ Campbell, Ewen K.; Holz, Mathias; Gerlich, Dieter; Maier, John P. (2015), "Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands", Nature523 (7560): 322–323, Bibcode:2015Natur.523..322Cdoi:10.1038/nature14566PMID 26178962S2CID 205244293
  185. ^ Berné, Olivier; Mulas, Giacomo; Joblin, Christine (2013), "Interstellar C60+", Astronomy & Astrophysics550: L4, arXiv:1211.7252Bibcode:2013A&A...550L...4Bdoi:10.1051/0004-6361/201220730S2CID 118684608
  186. Jump up to: a b Lacour, S.; et al. (2005), "Deuterated molecular hydrogen in the Galactic ISM. New observations along seven translucent sightlines", Astronomy and Astrophysics430 (3): 967–977, arXiv:astro-ph/0410033Bibcode:2005A&A...430..967Ldoi:10.1051/0004-6361:20041589S2CID 15081425
  187. Jump up to: a b c d Ceccarelli, Cecilia (2002), "Millimeter and infrared observations of deuterated molecules", Planetary and Space Science50 (12–13): 1267–1273, Bibcode:2002P&SS...50.1267Cdoi:10.1016/S0032-0633(02)00093-4
  188. ^ Green, Sheldon (1989), "Collisional excitation of interstellar molecules - Deuterated water, HDO", Astrophysical Journal Supplement Series70: 813–831, Bibcode:1989ApJS...70..813Gdoi:10.1086/191358
  189. ^ Butner, H. M.; et al. (2007), "Discovery of interstellar heavy water", Astrophysical Journal659 (2): L137–L140, Bibcode:2007ApJ...659L.137Bdoi:10.1086/517883hdl:10261/2640
  190. Jump up to: a b c d Turner, B. E.; Zuckerman, B. (1978), "Observations of strongly deuterated molecules - Implications for interstellar chemistry", Astrophysical Journal Letters225: L75–L79, Bibcode:1978ApJ...225L..75Tdoi:10.1086/182797
  191. ^ Melosso, M.; Bizzocchi, L.; Sipilä, O.; Giuliano, B. M.; Dore, L.; Tamassia, F.; Martin-Drumel, M.-A.; Pirali, O.; Redaelli, E.; Caselli, P. (2020). "First detection of NHD and ND2 in the interstellar medium". Astronomy & Astrophysics641: A153. arXiv:2007.07504Bibcode:2020A&A...641A.153Mdoi:10.1051/0004-6361/202038490S2CID 220525367.
  192. ^ Lis, D. C.; et al. (2002), "Detection of Triply Deuterated Ammonia in the Barnard 1 Cloud", Astrophysical Journal571 (1): L55–L58, Bibcode:2002ApJ...571L..55Ldoi:10.1086/341132.
  193. ^ Hatchell, J. (2003), "High NH2D/NH3 ratios in protostellar cores", Astronomy and Astrophysics403 (2): L25–L28, arXiv:astro-ph/0302564Bibcode:2003A&A...403L..25Hdoi:10.1051/0004-6361:20030297S2CID 118846422.
  194. ^ Turner, B. E. (1990), "Detection of doubly deuterated interstellar formaldehyde (D2CO) - an indicator of active grain surface chemistry", Astrophysical Journal Letters362: L29–L33, Bibcode:1990ApJ...362L..29Tdoi:10.1086/185840.
  195. Jump up to: a b Coutens, A.; et al. (9 May 2016). "The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium". Astronomy & Astrophysics590: L6. arXiv:1605.02562Bibcode:2016A&A...590L...6Cdoi:10.1051/0004-6361/201628612S2CID 32878172.
  196. ^ Cernicharo, J.; et al. (2013), "Detection of the Ammonium ion in space", Astrophysical Journal Letters771 (1): L10, arXiv:1306.3364Bibcode:2013ApJ...771L..10Cdoi:10.1088/2041-8205/771/1/L10S2CID 118461954
  197. ^ Doménech, J. L.; et al. (2013), "Improved Determination of the 10-00Rotational Frequency of NH3D+ from the High-Resolution Spectrum of the ν4 Infrared Band", Astrophysical Journal Letters771 (1): L11, arXiv:1306.3792Bibcode:2013ApJ...771L..11Ddoi:10.1088/2041-8205/771/1/L10S2CID 118461954
  198. ^ Gerin, M.; et al. (1992), "Interstellar detection of deuterated methyl acetylene", Astronomy and Astrophysics253 (2): L29–L32, Bibcode:1992A&A...253L..29G.
  199. ^ Markwick, A. J.; Charnley, S. B.; Butner, H. M.; Millar, T. J. (2005), "Interstellar CH3CCD", The Astrophysical Journal627 (2): L117–L120, Bibcode:2005ApJ...627L.117Mdoi:10.1086/432415.
  200. ^ Agúndez, M.; et al. (2008-06-04), "Tentative detection of phosphine in IRC +10216", Astronomy & Astrophysics485 (3): L33, arXiv:0805.4297Bibcode:2008A&A...485L..33Adoi:10.1051/0004-6361:200810193S2CID 16668630
  201. ^ Gupta, H.; et al. (2013), "Laboratory Measurements and Tentative Astronomical Identification of H2NCO+" (PDF)Astrophysical Journal Letters778 (1): L1, Bibcode:2013ApJ...778L...1Gdoi:10.1088/2041-8205/778/1/L1
  202. ^ Snyder, L. E.; et al. (2005), "A Rigorous Attempt to Verify Interstellar Glycine", Astrophysical Journal619 (2): 914–930, arXiv:astro-ph/0410335Bibcode:2005ApJ...619..914Sdoi:10.1086/426677S2CID 16286204.
  203. ^ Kuan, Y. J.; et al. (2003), "Interstellar Glycine", Astrophysical Journal593 (2): 848–867, Bibcode:2003ApJ...593..848Kdoi:10.1086/375637.
  204. ^ Widicus Weaver, S. L.; Blake, G. A. (2005), "1,3-Dihydroxyacetone in Sagittarius B2(N-LMH): The First Interstellar Ketose", Astrophysical Journal Letters624 (1): L33–L36, Bibcode:2005ApJ...624L..33Wdoi:10.1086/430407
  205. ^ Apponi, A. J.; Halfen, D. T.; Ziurys, L. M.; Hollis, J. M.; Remijan, Anthony J.; Lovas, F. J. (2006). "Investigating the Limits of Chemical Complexity in Sagittarius B2(N): A Rigorous Attempt to Confirm 1,3-Dihydroxyacetone"The Astrophysical Journal643 (1): L29–L32. Bibcode:2006ApJ...643L..29Adoi:10.1086/504979.
  206. ^ Fuchs, G. W.; et al. (2005), "Trans-Ethyl Methyl Ether in Space: A new Look at a Complex Molecule in Selected Hot Core Regions"Astronomy & Astrophysics444 (2): 521–530, arXiv:astro-ph/0508395Bibcode:2005A&A...444..521Fdoi:10.1051/0004-6361:20053599S2CID 14314388, archived from the original on 2011-07-19, retrieved 2010-07-18
  207. ^ Iglesias-Groth, S.; et al. (2008-09-20), "Evidence for the Naphthalene Cation in a Region of the Interstellar Medium with Anomalous Microwave Emission", The Astrophysical Journal Letters685 (1): L55–L58, arXiv:0809.0778Bibcode:2008ApJ...685L..55Idoi:10.1086/592349S2CID 17190892 - This spectral assignment has not been independently confirmed, and is described by the authors as "tentative" (page L58).
  208. ^ García-Hernández, D. A.; et al. (2011), "The Formation of Fullerenes: Clues from New C60, C70, and (Possible) Planar C24 Detections in Magellanic Cloud Planetary Nebulae", Astrophysical Journal Letters737(2): L30, arXiv:1107.2595Bibcode:2011ApJ...737L..30Gdoi:10.1088/2041-8205/737/2/L30S2CID 118504416.
  209. Jump up to: a b Battersby, S. (2004). "Space molecules point to organic origins"New Scientist. Retrieved 11 December 2009.
  210. ^ Iglesias-Groth, S.; et al. (May 2010), "A search for interstellar anthracene toward the Perseus anomalous microwave emission region", Monthly Notices of the Royal Astronomical Society407 (4): 2157–2165, arXiv:1005.4388Bibcode:2010MNRAS.407.2157Idoi:10.1111/j.1365-2966.2010.17075.xS2CID 56343980

Notes[edit]

  1. ^ On Earth, the dominant isotope of argon is 40Ar, so ArH+ would have a mass of 41 amu. However, the interstellar detection was of the 36ArH+ isotopologue, which has a mass of 37 amu.

External links[edit]

No comments:

Post a Comment