An atom laser is a coherent state of propagating atoms. They are created out of a Bose–Einstein condensate of atoms that are output coupled using various techniques. Much like an optical laser, an atom laser is a coherent beam that behaves like a wave. There has been some argument that the term "atom laser" is misleading. Indeed, "laser" stands for "Light Amplification by Stimulated Emission of Radiation" which is not particularly related to the physical object called an atom laser, and perhaps describes more accurately the Bose–Einstein condensate (BEC). The terminology most widely used in the community today is to distinguish between the BEC, typically obtained by evaporation in a conservative trap, from the atom laser itself, which is a propagating atomic wave obtained by extraction from a previously realized BEC. Some ongoing experimental research tries to obtain directly an atom laser from a "hot" beam of atoms without making a trapped BEC first.[1][1]
Atom lasers are critical for atom holography. Similar to conventional holography, atom holography uses the diffraction of atoms. The De Broglie wavelength of the atoms is much smaller than the wavelength of light, so atom lasers can create much higher resolution holographic images. Atom holography might be used to project complex integrated-circuit patterns, just a few nanometres in scale, onto semiconductors. Another application, which might also benefit from atom lasers, is atom interferometry. In an atom interferometer an atomic wave packet is coherently split into two wave packets that follow different paths before recombining. Atom interferometers, which can be more sensitive than optical interferometers, could be used to test quantum theory, and have such high precision that they may even be able to detect changes in space-time.[6] This is because the de Broglie wavelength of the atoms is much smaller than the wavelength of light, the atoms have mass, and because the internal structure of the atom can also be exploited.
https://en.wikipedia.org/wiki/Atom_laser
No comments:
Post a Comment