An ion trap is a combination of electric or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Ion traps have a number of scientific uses such as mass spectrometry, basic physics research, and controlling quantum states. The two most common types of ion trap are the Penning trap, which forms a potential via a combination of electric and magnetic fields, and the Paul trap which forms a potential via a combination of static and oscillating electric fields.
Penning traps can be used for precise magnetic measurements in spectroscopy. Studies of quantum state manipulation most often use the Paul trap. This may lead to a trapped ion quantum computer[1] and has already been used to create the world's most accurate atomic clocks.[2][3]Electron guns (a device emitting high-speed electrons, used in CRTs) can use an ion trap to prevent degradation of the cathode by positive ions.
https://en.wikipedia.org/wiki/Ion_trap
Quantum simulators permit the study of quantum systems that are difficult to study in the laboratory and impossible to model with a supercomputer. In this instance, simulators are special purpose devices designed to provide insight about specific physics problems.[1][2][3] Quantum simulators may be contrasted with generally programmable "digital" quantum computers, which would be capable of solving a wider class of quantum problems.
A universal quantum simulator is a quantum computer proposed by Yuri Manin in 1980[4] and Richard Feynman in 1982.[5] Feynman showed that a classical Turing machine would not be able to simulate a quantum effect, while his hypothetical universal quantum computer would be able to mimic needed quantum effect.[5][6]
A quantum system of many particles could be simulated by a quantum computer using a number of quantum bits similar to the number of particles in the original system.[5] This has been extended to much larger classes of quantum systems.[7][8][9][10]
Quantum simulators have been realized on a number of experimental platforms, including systems of ultracold quantum gases, polar molecules, trapped ions, photonic systems, quantum dots, and superconducting circuits.[11]
https://en.wikipedia.org/wiki/Quantum_simulator
In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter (also called the fifth state of matter) which is typically formed when a gas of bosons at low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.67 °F). Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which point microscopic quantum mechanicalphenomena, particularly wavefunction interference, become apparent macroscopically. A BEC is formed by cooling a gas of extremely low density (about one-hundred-thousandth (1/100,000) the density of normal air) to ultra-low temperatures.
This state was first predicted, generally, in 1924–1925 by Albert Einstein[1] following and crediting a pioneering paper by Satyendra Nath Bose on the new field now known as quantum statistics.[2]
https://en.wikipedia.org/wiki/Bose–Einstein_condensate
Amplitude amplification is a technique in quantum computing which generalizes the idea behind the Grover's search algorithm, and gives rise to a family of quantum algorithms. It was discovered by Gilles Brassard and Peter Høyer in 1997,[1] and independently rediscovered by Lov Grover in 1998.[2]
In a quantum computer, amplitude amplification can be used to obtain a quadratic speedup over several classical algorithms.
https://en.wikipedia.org/wiki/Amplitude_amplification
No comments:
Post a Comment