A particle-beam weapon uses a high-energy beam of atomic or subatomic particles to damage the target by disrupting its atomic and/or molecularstructure. A particle-beam weapon is a type of directed-energy weapon, which directs energy in a particular and focused direction using particles with minuscule mass. Some particle-beam weapons have potential practical applications, e.g. as an antiballistic missile defense system for the United Statesand its cancelled Strategic Defense Initiative. They have been known by myriad names: phasers, disruptors, particle accelerator guns, ion cannons, proton beams, lightning rays, rayguns, etc.
The concept of particle-beam weapons comes from sound scientific principles and experiments currently underway around the world. One effective process to cause damage to or destroy a target is to simply overheat it until it is no longer operational. However, after decades of R&D, particle-beam weapons are still very much at the research stage and it remains to be seen if or when they will be deployed as practical, high-performance military weapons.
Particle accelerators are a well-developed technology used in scientific research for decades. They use electromagnetic fields to accelerate and direct charged particles along a predetermined path, and electrostatic "lenses" to focus these streams for collisions. The cathode ray tube in many twentieth-century televisions and computer monitors is a very simple type of particle accelerator. More powerful versions include synchrotrons and cyclotrons used in nuclear research. A particle-beam weapon is a weaponized version of this technology. It accelerates charged particles (in most cases electrons, positrons, protons, or ionized atoms, but very advanced versions can accelerate other particles such as mercury nuclei) to near-light speed and then shoots them at a target. These particles have tremendous kinetic energy which they impart to matter in the target, inducing near-instantaneous and catastrophic superheating at the surface, and when penetrating deeper, ionization effects which can be especially detrimental to electronics in the target. However, high-power accelerators are extremely massive (sometimes in the order of kilometers, like the LHC), with highly constricted construction, operation and maintenance requirements, and thus unable to be weaponized using present or near-future technologies.
https://en.wikipedia.org/wiki/Particle-beam_weapon
No comments:
Post a Comment