Blog Archive

Thursday, August 26, 2021

08-26-2021-1606 - Paula B. Matheus Carnevali et al. 2019, Hydrogen-based metabolism as an ancestral trait inlineages sibling to the Cyanobacteria. Nature Communications 10(1) · December 2019 DOI: 10.1038/s41467-018-08246-y

 

  1.  Paula B. Matheus Carnevali et al. 2019, Hydrogen-based metabolism as an ancestral trait inlineages sibling to the Cyanobacteria. Nature Communications 10(1) · December 2019 DOI: 10.1038/s41467-018-08246-y


https://en.wikipedia.org/wiki/Terrabacteria

lithoautotroph or chemolithoautotroph is a microbe which derives energy from reduced compounds of mineral origin. Lithoautotrophs are a type of lithotrophs with autotrophic metabolic pathways. Lithoautotrophs are exclusively microbesmacrofauna do not possess the capability to use mineral sources of energy. Most lithoautotrophs belong to the domain Bacteria, while some belong to the domain Archaea. For lithoautotrophic bacteria, only inorganic molecules can be used as energy sources. The term "Lithotroph" is from Greek lithos (λίθος) meaning "rock" and  trōphos (τροφοσ) meaning "consumer"; literally, it may be read "eaters of rock". Many lithoautotrophs are extremophiles, but this is not universally so.

Lithoautotrophs are extremely specific in using their energy source. Thus, despite the diversity in using inorganic molecules in order to obtain energy that lithoautotrophs exhibit as a group, one particular lithoautotroph would use only one type of inorganic molecule to get its energy.

In July 2020 researchers report the discovery of chemolithoautotrophic bacterial culture that feeds on the metal manganese after performing unrelated experiments and named its bacterial species Candidatus Manganitrophus noduliformans and Ramlibacter lithotrophicus.[1][2][3]

Geological processes[edit]

Lithoautotrophs participate in many geological processes, such as the weathering of parent material (bedrock) to form soil, as well as biogeochemical cycling of sulfurpotassium, and other elements. They may be present in the deep terrestrial subsurface (they have been found well over 3 km below the surface of the planet), in soils, and in endolith communities. As they are responsible for the liberation of many crucial nutrients, and participate in the formation of soil, lithoautotrophs play a crucial role in the maintenance of life on Earth.

Acid mine drainage[edit]

Lithoautotrophic microbial consortia are responsible for the phenomenon known as acid mine drainage, whereby energy-rich pyrite present in mine tailing heaps and in exposed rock faces is metabolized to form sulfites, which form potentially corrosive sulfuric acid when dissolved in water and exposed to aerial oxygen. Acid mine drainage drastically alters the acidity and chemistry of groundwater and streams, and may endanger plant and animal populations. Activity similar to acid mine drainage, but on a much lower scale, is also found in natural conditions such as the rocky beds of glaciers, in soil and talus, and in the deep subsurface.

References[edit]

  1. ^ "Bacteria with a metal diet discovered in dirty glassware"phys.org. Retrieved 16 August 2020.
  2. ^ Woodyatt, Amy. "Bacteria that eats metal accidentally discovered by scientists"CNN. Retrieved 16 August 2020.
  3. ^ Yu, Hang; Leadbetter, Jared R. (July 2020). "Bacterial chemolithoautotrophy via manganese oxidation"Nature583 (7816): 453–458. doi:10.1038/s41586-020-2468-5ISSN 1476-4687PMC 7802741.


https://en.wikipedia.org/wiki/Lithoautotroph


Comammox

From Wikipedia, the free encyclopedia
Jump to navigationJump to search

Comammox (COMplete AMMonia OXidation) is the name attributed to an organism that can convert ammonia into nitrite and then into nitrate through the process of nitrification.[1] Nitrification has traditionally thought to be a two-step process, where ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and then nitrite-oxidizing bacteria convert to nitrate.[2][3] Complete conversion of ammonia into nitrate by a single microorganism was first predicted in 2006.[1] In 2015 the presence of microorganisms that could carry out both conversion processes was discovered within the genus Nitrospira, and the nitrogen cycle was updated.[4][5] Within the genus Nitrospira, the major ecosystems comammox are primarily found in natural aquifers and engineered ecosystems.[6]

Interestingly complete nitrification step yield more energy (∆G°′ = −349 kJ mol−1 NH3) than either single oxidation alone (∆G°′ = −275 kJ mol−1 NH3 for ammonia oxidation to nitrite and ∆G°′ = −74 kJ mol−1 NO2 for nitrite oxidation to nitrate).[5]

Comammox Nitrospira Bacteria[edit]

Complete nitrification of oxidizing ammonia to nitrate is energetically advantageous for Nitrospira.[5] Due to the previous research done on Nitrospira, it was thought that all Nitrospira use nitrite as their energy source.[1] Therefore, comammox Nitrospira were not discovered until 2015.[5] All discovered nitrifiers belong to sublineage II of the genus Nitrospira.[3] The genome of the nitrifying chemilithoautotrophic bacterium from the genus Nitrospira encodes for both ammonia and nitrite oxidation.[5] The genes associated with the growth by ammonia oxidation to nitrate are ammonia monooxygenase and hydroxylamine dehydrogenases genes (e.g. amoA gene and hao cluster).[5] This shows that complete nitrifying Nitrospira serve as cornerstones of the nitrogen-cycling microbial communities found in the environment. Nearly two years after the discovery of comammox organisms, Nitrospira inopinata was the first complete nitrifier to be isolated in pure culture.[7] Kinetic and physiological analysis of Nitrospira inopinata demonstrated that this complete nitrifier has a high affinity for ammonia, slow growth rate, low maximum rate of ammonia oxidation, and high yield.[7][6] The discovery of comammox Nitrospira provides a view into the modular evolution of the nitrogen cycle and expands upon the complexity of the evolutionary history of nitrification.[5]

Ecosystem of Comammox[edit]

Comammox have been identified in many ecosystems including natural freshwater and terrestrial ecosystems. Notably commamox genes were not found to be abundant in oceans. Additionally, the use of engineered ecosystems for comammox could be used for ammonium removal during water and wastewater treatment.[3] Comammox have been found in many engineered systems including aquaculture biofiltration units, drinking water treatment and distribution systems, and wastewater treatmentplants.[3] [6] The growth of comammox in these engineered ecosystems co-occur with ammonia-oxidizing bacteria and/or archaea, and usually outnumber other ammonia-oxidizing prokaryotes.[3][6] The ecosystem of comammox is currently unknown in terms of biogeography including their distribution and abundance due to the influences of process configuration and chemical composition of the treated wastewater.[3][6] Following these findings, it was determined that comammox out-select Nitrospira in engineered environments, making comammox the ideal microorganism in use in wastewater treatment processes.[3]

References[edit]

  1. Jump up to: a b c Costa, E; Pérez, J; Kreft, JU (May 2006). "Why is metabolic labour divided in nitrification?". Trends in Microbiology14 (5): 213–9. doi:10.1016/j.tim.2006.03.006PMID 16621570.
  2. ^ Winogradsky, Serge (1892). "Contributions a la morphologie des organismes de la nitrification". Arch. Sci. Biol1: 87–137.
  3. Jump up to: a b c d e f g Lawson, Christopher E; Lücker, Sebastian (2018-04-01). "Complete ammonia oxidation: an important control on nitrification in engineered ecosystems?"Current Opinion in Biotechnology. Energy biotechnology • Environmental biotechnology. 50: 158–165. doi:10.1016/j.copbio.2018.01.015ISSN 0958-1669PMID 29414055.
  4. ^ van Kessel, MA; Speth, DR; Albertsen, M; Nielsen, PH; Op den Camp, HJ; Kartal, B; Jetten, MS; Lücker, S (26 November 2015). "Complete nitrification by a single microorganism"Nature528 (7583): 555–9. Bibcode:2015Natur.528..555Vdoi:10.1038/nature16459PMC 4878690PMID 26610025.
  5. Jump up to: a b c d e f g Daims, H; Lebedeva, EV; Pjevac, P; Han, P; Herbold, C; Albertsen, M; Jehmlich, N; Palatinszky, M; Vierheilig, J; Bulaev, A; Kirkegaard, RH; Bergen, MV; Rattei, T; Bendinger, B; Nielsen, PH; Wagner, M (26 November 2015). "Complete nitrification by Nitrospira bacteria"Nature528 (7583): 504–9. Bibcode:2015Natur.528..504Ddoi:10.1038/nature16461PMC 5152751PMID 26610024.
  6. Jump up to: a b c d e Fowler, Susan Jane; Palomo, Alejandro; Dechesne, Arnaud; Mines, Paul D.; Smets, Barth F. (March 2018). "Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities: Comammox Nitrospira in drinking water biofilters" (PDF)Environmental Microbiology20 (3): 1002–1015. doi:10.1111/1462-2920.14033PMID 29314644S2CID 4325672.
  7. Jump up to: a b Kits, K. Dimitri; Sedlacek, Christopher J.; Lebedeva, Elena V.; Han, Ping; Bulaev, Alexandr; Pjevac, Petra; Daebeler, Anne; Romano, Stefano; Albertsen, Mads (2017). "Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle"Nature549 (7671): 269–272. Bibcode:2017Natur.549..269Kdoi:10.1038/nature23679PMC 5600814PMID 28847001.


https://en.wikipedia.org/wiki/Comammox


Nitrospirae is a phylum of bacteria. It contains only one class, Nitrospira, which itself contains one order (Nitrospirales) and one family (Nitrospiraceae). It includes multiple genera, such as Nitrospira, the largest. The first member of this phylum, Nitrospira marina, was discovered in 1985.[1] The second member, Nitrospira moscoviensis, was discovered in 1995.[2][3]

Nitrospirae contain nitrifying taxa which oxidize nitrite to nitrate (nitrite-oxidizing bacteria, NOB[4]) and commamox bacteria Nitrospira inopinata discovered in 2015[5][6] and cultivated in 2017.[7]

Nitrospirae
Scientific classification
Domain:
Phylum:
Nitrospirae

Garrity & Holt 2001
Class & Order
Synonyms
  • Nitrospiraeota Oren et al. 2015
  • "Nitrospirota" Whitman et al. 2018

Phylogeny[edit]

16S rRNA-based LTP release 132 by The All-Species Living Tree Project[8]Annotree v1.2.0[9][10] which uses the GTDB 05-RS95 (Genome Taxonomy Database)[11][12]
Leptospirillum

L. ferriphilum

L. ferrooxidans

Thermodesulfovibrio

T. hydrogeniphilus

T. aggregans

T. thiophilus

T. islandicus

T. yellowstonii

"Thermodesulfovibrionia"

"Ca. Magnetobacterium casense"

"Ca. Sulfobium mesophilum"

Thermodesulfovibrio

T. aggregans

T. thiophilus

T. yellowstonii

"Leptospirillum"

L. ferrooxidans

"L. rubarum"

L. ferriphilum

Nitrospiria

"Ca.Manganitrophus noduliformans"

Nitrospira

"N. defluvii"

"N. japonica"

"N. lenta"

N. moscoviensis

"Ca. N. inopinata"

"Ca. N. nitrosa"

"Ca. N. nitrificans"

Taxonomy[edit]

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LSPN)[13] and the National Center for Biotechnology Information (NCBI).[3]

See also[edit]

References[edit]

  1. ^ Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U (1986). "Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium". Arch Microbiol144 (1): 1–7. doi:10.1007/BF00454947S2CID 29796511.
  2. ^ Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E (July 1995). "A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship". Archives of Microbiology164 (1): 16–23. doi:10.1007/BF02568729PMID 7646315S2CID 2702110.
  3. Jump up to: a b Sayers. "Nitrospirae"National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2016-03-20.
  4. ^ Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M (November 2001). "In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants"Applied and Environmental Microbiology67 (11): 5273–84. doi:10.1128/AEM.67.11.5273-5284.2001PMC 93301PMID 11679356.
  5. ^ Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. (December 2015). "Complete nitrification by Nitrospira bacteria"Nature528(7583): 504–9. Bibcode:2015Natur.528..504Ddoi:10.1038/nature16461PMC 5152751PMID 26610024.
  6. ^ van Kessel MA, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJ, Kartal B, et al. (December 2015). "Complete nitrification by a single microorganism"Nature528 (7583): 555–9. Bibcode:2015Natur.528..555Vdoi:10.1038/nature16459PMC 4878690PMID 26610025.
  7. ^ Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, et al. (September 2017). "Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle"Nature549 (7671): 269–272. Bibcode:2017Natur.549..269Kdoi:10.1038/nature23679PMC 5600814PMID 28847001.
  8. ^ All-Species Living Tree Project."16S rRNA-based LTP release 132"Silva Comprehensive Ribosomal RNA Database. Retrieved 2015-08-20.
  9. ^ "AnnoTree v1.2.0"AnnoTree.
  10. ^ Mendler, K; Chen, H; Parks, DH; Hug, LA; Doxey, AC (2019). "AnnoTree: visualization and exploration of a functionally annotated microbial tree of life"Nucleic Acids Research47 (9): 4442–4448. doi:10.1093/nar/gkz246PMC 6511854PMID 31081040.
  11. ^ "GTDB release 05-RS95"Genome Taxonomy Database.
  12. ^ Parks, DH; Chuvochina, M; Chaumeil, PA; Rinke, C; Mussig, AJ; Hugenholtz, P (September 2020). "A complete domain-to-species taxonomy for Bacteria and Archaea"Nature Biotechnology38 (9): 1079–1086. bioRxiv 10.1101/771964doi:10.1038/s41587-020-0501-8PMID 32341564S2CID 216560589.
  13. ^ Euzéby JP. ""Nitrospirae""List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2016-03-20.

Further reading[edit]

External links[edit]



https://en.wikipedia.org/wiki/Nitrospirae



Acidobacteria is a phylum of bacteria. Its members are physiologically diverse and ubiquitous, especially in soils, but are under-represented in culture.[2][3][4]

Acidobacteria
Acidobacterium.jpg
Acidobacterium
Scientific classification
Domain:
Phylum:
Acidobacteria

Thrash and Coates 2012[1]
Class
Synonyms
  • Acidobacteraeota Oren et al. 2015
  • "Acidobacteriota" Whitman et al. 2018
  • ?"Aminicenantes" Rinke et al. 2013
  • ?"Fischerbacteria" Anantharaman et al. 2016

Members of this phylum are physiologically diverse, and can be found in a variety of environments including soil, decomposing wood,[5] hot springs, oceans, caves, and metal-contaminated soils.[6] The members of this phylum are particularly abundant in soil habitats representing up to 52% of the total bacterial community.[7] Environmental factors such as pH and nutrients have been seen to drive Acidobacteria dynamics.[8][9][10] Many Acidobacteria are acidophilic, including the first described member of the phylum, Acidobacterium capsulatum.[11]

Other notable species are Holophaga foetida,[12] Geothrix fermentans,[13] Acanthopleuribacter pedis[14] and Bryobacter aggregatus.[15] Since they have only recently been discovered and the large majority have not been cultured, the ecology and metabolism of these bacteria is not well understood.[3] However, these bacteria may be an important contributor to ecosystems, since they are particularly abundant within soils.[16] Members of subdivisions 1, 4, and 6 are found to be particularly abundant in soils.[17]

As well as their natural soil habitat, unclassified subdivision 2 Acidobacteria have also been identified as a contaminant of DNA extraction kit reagents, which may lead to their erroneous appearance in microbiota or metagenomic datasets.[18]

Members of subdivision 1 have been found to dominate in low pH conditions.[19][8] Additionally, Acidobacteria from acid mine drainage have been found to be more adapted to acidic pH conditions (pH 2-3) compared to Acidobacteria from soils,[20]potentially due to cell specialization and enzyme stability.[8]

The G+C content of Acidobacteria genomes are consistent within their subdivisions - above 60% for group V fragments and roughly 10% lower for group III fragments.[3]

The majority of Acidobacteria are considered aerobes.[21][22] There are some Acidobacteria that are considered anaerobes within subdivision 8[13] and subdivision 23.[23] It has been found that some strains of Acidobacteria originating from soils have the genomic potential to respire oxygen at atmospheric and sub-atmospheric concentrations.[22]

Members of the Acidobacteria phylum have been considered oligotrophic bacteria due to high abundances in low organic carbon environments.[8] However, the variation in this phylum may indicate that they may not have the same ecological strategy.[8]

History[edit]

The first species, Acidobacterium capsulatum, of this phylum was discovered in 1991.[24] However, Acidobacteria were not recognized as a novel division until 1997,[11]and were not recognized as a phylum until 2012.[25] First genome was sequenced in 2007.[26]

Metabolism[edit]

Carbon[edit]

Some members of subdivision 1 are able to use D-glucoseD-xylose, and lactose as carbon sources,[8] but are unable to use fucose or sorbose.[27] Members of subdivision 1 also contain enzymes such as galactosidases used in the breakdown of sugars.[8] Members of subdivision 4 have been found to use chitin as a carbon source.[28][29][8]

Nitrogen[edit]

There has been no clear evidence that Acidobacteria are involved in nitrogen-cycle processes such as nitrificationdenitrification, or nitrogen fixation.[8] However, Geothrix fermantans was shown to be able to reduce nitrate and contained the norB gene.[8] The NorB gene was also identified in Koribacter verstailis and Solibacter usitatus.[30][8]In addition, the presence of the nirA gene has been observed in members of subdivision 1.[8] Additionally, to date, all genomes have been described to directly uptake ammonium via ammonium channel transporter family genes.[22][8] Acidobacteria can use both inorganic and organic nitrogen as their nitrogen sources.

Taxonomy[edit]

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LSPN)[31] and the National Center for Biotechnology Information (NCBI).[32]

Phylogeny of Acidobacteria using 16S rRNA (LTP release 132[33])
Vicinamibacteria

Luteitalea

Vicinamibacter

Holophagae
Acanthopleuribacteraceae

Acanthopleuribacter

Holophagaceae

Geothrix

Holophaga

Acidobacteriia
Bryobacteraceae

Bryobacter

Paludibaculum

Acidobacteriaceae

Phylogeny of Acidobacteria (Annotree v1.2.0,[34][35]GTDB 05-RS95[36][37])

Holophagaceae

"Aminicenantia"

"Aminicenantaceae"

"Saccharicenantaceae"

Thermoanaerobaculaceae

Vicinamibacteraceae

Blastocatellia

"Chloracidobacteriaceae"

Pyrinomonadaceae

Acidobacteria
Bryobacterales

Bryobacteraceae

Acidobacteriales

"Korobacteraceae"

Acidobacteriaceae

References[edit]

  1. ^ "Validation List no. 143". Int. J. Syst. Evol. Microbiol62: 1–4. 2012. doi:10.1099/ijs.0.68147-0.
  2. ^ Barns SM; Cain EC; Sommerville L; Kuske CR (2007). "Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum"Appl. Environ. Microbiol73 (9): 3113–6. doi:10.1128/AEM.02012-06PMC 1892891PMID 17337544.
  3. Jump up to: a b c Quaiser A; Ochsenreiter T; Lanz C; et al. (2003). "Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics". Mol. Microbiol50 (2): 563–75. doi:10.1046/j.1365-2958.2003.03707.xPMID 14617179S2CID 25162803.
  4. ^ Rappe, M. S.; Giovannoni, S. J. (2003). "The Uncultured Microbial Majority". Annual Review of Microbiology57: 369–394. doi:10.1146/annurev.micro.57.030502.090759PMID 14527284.
  5. ^ Tláskal, Vojtěch; Baldrian, Petr (2021-06-17). "Deadwood-Inhabiting Bacteria Show Adaptations to Changing Carbon and Nitrogen Availability During Decomposition"Frontiers in Microbiology12: 685303. doi:10.3389/fmicb.2021.685303ISSN 1664-302X.
  6. ^ Thrash JC, Coates JD (2015). "Acidobacteria phyl. nov.". In Whitman WB (ed.). Bergey's Manual of Systematics of Archaea and Bacteria. John Wiley & Sons. pp. 1–5. doi:10.1002/9781118960608.pbm00001ISBN 9781118960608.
  7. ^ Dunbar, John; Barns, Susan M.; Ticknor, Lawrence O.; Kuske, Cheryl R. (2002). "Empirical and Theoretical Bacterial Diversity in Four Arizona Soils"Applied and Environmental Microbiology. American Society for Microbiology. 68 (6): 3035–3045. doi:10.1128/AEM.68.6.3035-3045.2002OCLC 679526952PMC 123964PMID 12039765.
  8. Jump up to: a b c d e f g h i j k l m Kielak, Anna M.; Barreto, Cristine C.; Kowalchuk, George A.; van Veen, Johannes A.; Kuramae, Eiko E. (2016-05-31). "The Ecology of Acidobacteria: Moving beyond Genes and Genomes"Frontiers in Microbiology7: 744. doi:10.3389/fmicb.2016.00744ISSN 1664-302XPMC 4885859PMID 27303369.
  9. ^ Jones, Ryan T; Robeson, Michael S; Lauber, Christian L; Hamady, Micah; Knight, Rob; Fierer, Noah (2009-01-08). "A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses"The ISME Journal3(4): 442–453. doi:10.1038/ismej.2008.127ISSN 1751-7362PMC 2997719PMID 19129864.
  10. ^ Fierer, Noah; Bradford, Mark A.; Jackson, Robert B. (June 2007). "Toward an Ecological Classification of Soil Bacteria". Ecology88 (6): 1354–1364. doi:10.1890/05-1839ISSN 0012-9658PMID 17601128S2CID 7687418.
  11. Jump up to: a b Kuske CR; Barns SM; Busch JD (1 September 1997). "Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions"Appl. Environ. Microbiol63 (9): 3614–21. doi:10.1128/AEM.63.9.3614-3621.1997PMC 168668PMID 9293013.
  12. ^ Liesack, Werner; Bak, Friedhelm; Kreft, Jan-Ulrich; Stackebrandt, E. (30 June 1994). "Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds". Archives of Microbiology162 (1–2): 85–90. doi:10.1007/BF00264378PMID 8085918S2CID 23516245.
  13. Jump up to: a b Coates, J. D.; Ellis, D. J.; Gaw, C. V.; Lovley, D. R. (1 October 1999). "Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer"International Journal of Systematic Bacteriology49 (4): 1615–1622. doi:10.1099/00207713-49-4-1615PMID 10555343.
  14. ^ Fukunaga, Y; Kurahashi, M; Yanagi, K; Yokota, A; Harayama, S (November 2008). "Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum 'Acidobacteria'"International Journal of Systematic and Evolutionary Microbiology58 (Pt 11): 2597–2601. doi:10.1099/ijs.0.65589-0PMID 18984699.
  15. ^ Kulichevskaya, IS; Suzina, NE; Liesack, W; Dedysh, SN (February 2010). "Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria". International Journal of Systematic and Evolutionary Microbiology60 (Pt 2): 301–6. doi:10.1099/ijs.0.013250-0PMID 19651730.
  16. ^ Eichorst SA; Breznak JA; Schmidt TM (2007). "Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria"Appl. Environ. Microbiol73 (8): 2708–17. doi:10.1128/AEM.02140-06PMC 1855589PMID 17293520.
  17. ^ Janssen, P. H. (2006-03-01). "Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes"Applied and Environmental Microbiology72 (3): 1719–1728. doi:10.1128/aem.72.3.1719-1728.2006ISSN 0099-2240PMC 1393246PMID 16517615.
  18. ^ Salter, Susannah J.; Cox, Michael J.; Turek, Elena M.; Calus, Szymon T.; Cookson, William O.; Moffatt, Miriam F.; Turner, Paul; Parkhill, Julian; Loman, Nicholas J. (2014-01-01). "Reagent and laboratory contamination can critically impact sequence-based microbiome analyses"BMC Biology12: 87. doi:10.1186/s12915-014-0087-zISSN 1741-7007PMC 4228153PMID 25387460.
  19. ^ Sait, M.; Davis, K. E. R.; Janssen, P. H. (2006-03-01). "Effect of pH on Isolation and Distribution of Members of Subdivision 1 of the Phylum Acidobacteria Occurring in Soil"Applied and Environmental Microbiology72 (3): 1852–1857. doi:10.1128/aem.72.3.1852-1857.2006ISSN 0099-2240PMC 1393200PMID 16517631.
  20. ^ Kleinsteuber, Sabine; Müller, Frank-Dietrich; Chatzinotas, Antonis; Wendt-Potthoff, Katrin; Harms, Hauke (January 2008). "Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake"FEMS Microbiology Ecology63 (1): 107–117. doi:10.1111/j.1574-6941.2007.00402.xISSN 0168-6496PMID 18028401.
  21. ^ Eichorst, Stephanie A. Kuske, Cheryl R. Schmidt, Thomas M. Influence of Plant Polymers on the Distribution and Cultivation of Bacteria in the Phylum Acidobacteria ▿ †. American Society for Microbiology (ASM). OCLC 744821434.
  22. Jump up to: a b c Eichorst, Stephanie A. Trojan, Daniela. Roux, Simon. Herbold, Craig. Rattei, Thomas. Woebken, Dagmar. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environmentsOCLC 1051354840.
  23. ^ Losey, N. A.; Stevenson, B. S.; Busse, H.-J.; Damste, J. S. S.; Rijpstra, W. I. C.; Rudd, S.; Lawson, P. A. (2013-06-14). "Thermoanaerobaculum aquaticum gen. nov., sp. nov., the first cultivated member of Acidobacteria subdivision 23, isolated from a hot spring". International Journal of Systematic and Evolutionary Microbiology63 (Pt 11): 4149–4157. doi:10.1099/ijs.0.051425-0ISSN 1466-5026PMID 23771620S2CID 32574193.
  24. ^ Kishimoto, Noriaki; Kosako, Yoshimasa; Tano, Tatsuo (31 December 1990). "Acidobacterium capsulatum gen. nov., sp. nov.: An acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment". Current Microbiology22 (1): 1–7. doi:10.1007/BF02106205S2CID 20636659.
  25. ^ Euzeby JP. "Taxa above the rank of class - Acidobacteria"LPSN. Retrieved 26 November 2017.
  26. ^ Ward, Naomi L.; Challacombe, Jean F.; Janssen, Peter H.; Henrissat, Bernard; Coutinho, Pedro M.; Wu, Martin; Xie, Gary; Haft, Daniel H.; Sait, Michelle; Badger, Jonathan; Barabote, Ravi D. (2009-02-05). "Three Genomes from the Phylum Acidobacteria Provide Insight into the Lifestyles of These Microorganisms in Soils"Applied and Environmental Microbiology75 (7): 2046–2056. doi:10.1128/aem.02294-08ISSN 0099-2240PMC 2663196PMID 19201974.
  27. ^ Li, Zijie; Gao, Yahui; Nakanishi, Hideki; Gao, Xiaodong; Cai, Li (2013-11-12). "Biosynthesis of rare hexoses using microorganisms and related enzymes"Beilstein Journal of Organic Chemistry9: 2434–2445. doi:10.3762/bjoc.9.281ISSN 1860-5397PMC 3869271PMID 24367410.
  28. ^ Huber, K. J.; Wust, P. K.; Rohde, M.; Overmann, J.; Foesel, B. U. (2014-02-26). "Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel members of subdivision 4 of the Acidobacteria isolated from semiarid savannah soil". International Journal of Systematic and Evolutionary Microbiology64 (Pt 6): 1866–1875. doi:10.1099/ijs.0.060236-0hdl:10033/344212ISSN 1466-5026PMID 24573163.
  29. ^ Foesel, Bärbel U.; Rohde, Manfred; Overmann, Jörg (March 2013). "Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil – The first described species of Acidobacteria subdivision 4". Systematic and Applied Microbiology36 (2): 82–89. doi:10.1016/j.syapm.2012.11.002ISSN 0723-2020PMID 23266188.
  30. ^ Coates, J. D.; Ellis, D. J.; Gaw, C. V.; Lovley, D. R. (1999-10-01). "Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer"International Journal of Systematic Bacteriology49 (4): 1615–1622. doi:10.1099/00207713-49-4-1615ISSN 0020-7713PMID 10555343.
  31. ^ Euzéby JP. "Acidobacteria"List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2021-03-20.
  32. ^ Sayers. "Acidobacteria"National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2021-03-20.
  33. ^ "16S rRNA-based LTP release 132"Silva Comprehensive Ribosomal RNA Database. Retrieved 2015-08-20.
  34. ^ "AnnoTree v1.2.0"AnnoTree.
  35. ^ Mendler, K; Chen, H; Parks, DH; Hug, LA; Doxey, AC (2019). "AnnoTree: visualization and exploration of a functionally annotated microbial tree of life"Nucleic Acids Research47 (9): 4442–4448. doi:10.1093/nar/gkz246PMC 6511854PMID 31081040.
  36. ^ "GTDB release 05-RS95"Genome Taxonomy Database.
  37. ^ Parks, DH; Chuvochina, M; Chaumeil, PA; Rinke, C; Mussig, AJ; Hugenholtz, P (September 2020). "A complete domain-to-species taxonomy for Bacteria and Archaea"Nature Biotechnology38 (9): 1079–1086. bioRxiv 10.1101/771964doi:10.1038/s41587-020-0501-8PMID 32341564S2CID 216560589.


https://en.wikipedia.org/wiki/Acidobacteria

The phylum "Bacteroidetes" is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.

Although some Bacteroides spp. can be opportunistic pathogens, many "Bacteroidetes" are symbiotic species highly adjusted to the gastrointestinal tract. Bacteroides are highly abundant in intestines, reaching up to 1011 cells g−1 of intestinal material. They perform metabolic conversions that are essential for the host, such as degradation of proteins or complex sugar polymers. "Bacteroidetes" colonize the gastrointestinal already in infants, as non-digestible oligosaccharides in mother milk support the growth of both Bacteroides and Bifidobacterium spp. Bacteroides spp. are selectively recognized by the immune system of the host through specific interactions.[3]

"Bacteroidetes"
Bacteroides biacutis
Bacteroides biacutis
Scientific classificatione
Domain:Bacteria
(unranked):FCB group
(unranked):Bacteroidetes-Chlorobi group
Phylum:Bacteroidetes
Krieg et al. 2012[1]
Classes[2]
Synonyms
  • "BacteroidotaWhitman et al. 2018
  • "BacteroidaeotaOren et al. 2015
  • "SaprospiraeMargulis and Schwartz 1998
  • "SphingobacteriaCavalier-Smith 2002

Gastrointestinal "Bacteroidetes" species produce succinic acidacetic acid, and in some cases propionic acid, as the major end-products. Species belonging to the genera AlistipesBacteroidesParabacteroidesPrevotellaParaprevotellaAlloprevotellaBarnesiella, and Tannerella are saccharolytic, while species belonging to Odoribacter and Porphyromonas are predominantly asaccharolytic. Some Bacteroides spp. and Prevotella spp. can degrade complex plant polysaccharides such as starchcellulosexylans, and pectins. The "Bacteroidetes" species also play an important role in protein metabolism by proteolytic activity assigned to the proteases linked to the cell. Some "Bacteroides spp. have a potential to utilize urea as a nitrogen source. Other important functions of Bacteroides spp. include the deconjugation of bile acids and growth on mucus.[3] Many members of the "Bacteroidetes" genera (FlexibacterCytophagaSporocytophaga and relatives) are coloured yellow-orange to pink-red due to the presence of pigments of the flexirubin group. In some "Bacteroidetes" strains, flexirubins may be present together with carotenoid pigments. Carotenoid pigments are usually found in marine and halophilic members of the group, whereas flexirubin pigments are more frequent in clinical, freshwater or soil-colonizing representatives.[10]

Phylogeny[edit]

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature[2] and the phylogeny is based on whole-genome sequences.[13]

"Bacteroidetes"

Saprospiria

Flavobacteriia

Bacteroidia

Chitinophagia

Sphingobacteriia

Cytophagia

outgroups

"Chlorobi"

"Balneolaeota"

"Rhodothermaeota"



https://en.wikipedia.org/wiki/Bacteroidetes


Candidate phyla radiation (also referred to as CPR group) is a large evolutionary radiation of bacterial lineages whose members are mostly uncultivated and only known from metagenomics and single cell sequencing. They have been described as nanobacteria or ultra-small bacteria due to their reduced size (nanometric) compared to other bacteria. Originally, it has been suggested that CPR represents over 15% of all bacterial diversity and may consist of more than 70 different phyla.[1] However, a recently proposed standardized bacterial taxonomy based on relative evolutionary divergence found that CPR represents a single phylum.[2] CPR lineages are generally characterized as having small genomes and lacking several biosynthetic pathways and ribosomal proteins. This has led to the speculation that they are likely obligate symbionts.[3][4]

Earlier work proposed a superphylum called Patescibacteria which encompassed several phyla later attributed to the CPR group.[5] Therefore, Patescibacteria and CPR are often used as synonyms.[6]

Candidate phyla radiation
Ultra-small bacteria.png
Representation of a bacterium of this phylum.
Scientific classificatione
Domain:Bacteria
(unranked):Bacteria candidate phyla
Infrakingdom:Candidate phyla radiation

Phylogeny[edit]

A 2016 tree of life based on ribosomal proteins.[3]

Candidate phyla radiation is the first clade to separate from bacteria according to some phylogenetic analyses based on ribosomal proteins, 16S rRNA, and protein family presence. These phylogenetic analyses have found the following phylogeny between phyla and superphyla. The superphyla are shown in bold.[4][3]

Bacteria

The other bacteria

CPR

 Wirthbacteria

 Dojkabacteria

 Katanobacteria

 Microgenomates

 Berkelbacteria

 Saccharibacteria

 Peregrinibacteria

 Absconditabacteria

 Gracilibacteria

 Parcubacteria

Alternatively, it has been proposed that the CPR group could belong to Terrabacteria being more closely related to Chloroflexi. An alternative location for CPR in the phylogenetic tree is as follows.[9]

Bacteria 

Gracilicutes

Terrabacteria

DST

Cyanobacteria/Melainabacteria

Firmicutes (includes Tenericutes)

Actinobacteria

Armatimonadetes

Eremiobacteraeota

CPR

Dormibacteraeota

Chloroflexi

Provisional taxonomy[edit]

Because many CPR members are uncultivable, they cannot be formally put into the bacterial taxonomy, but a number of provisional, or Candidatus, names have been generally agreed on.[5][10][11] As of 2017, two superphyla are generally recognized under CPR, Parcubacteria and Microgenomates.[1] The Phyla under CPR include:

Phylogeny of Patescibacteria[12][10]

"Wirthbacteria"

"Microgenomates"

"Dojkabacteria"

"Katanobacteria"

"Microgenomatia"

cluster
"Gracilibacteria"

"Gracilibacteria"

cluster
"Saccharibacteria"

"Berkelbacteria" (UBA1384)

"Kazanbacteria" (Kazan)

"Howlettbacteria"

"Saccharimonadia"

cluster
"Parcubacteria"

"Andersenbacteria"

"Doudnabacteria"

"Torokbacteria" (GCA-2792135)

ABY1

"Paceibacteria"

cluster
Phylogeny of Microgenomatia[12][10]

"Woykebacterales" (CG2-30-54-11)

"Curtissbacterales"

"Daviesbacterales"

"Roizmanbacterales" (UBA1406)

"Gottesmanbacterales" (UBA10105)

"Levybacterales"

"Shapirobacterales" (UBA12405)

GWA2‑44‑7

"Amesbacteraceae"

"Blackburnbacteraceae" (UBA10165)

"Woesebacteraceae" (UBA8517)

UBA1400

"Beckwithbacteraceae" (CG1-02-47-37)

"Chisholmbacteraceae"

"Collierbacteraceae" (UBA12108)

"Chazhemtobacteraceae"

"Cerribacteraceae" (UBA12028)

"Pacebacteraceae" (PJMF01)

Phylogeny of Gracilibacteria[12][10]

"Absconditabacterales"

"Gracilibacterales" (BD1-5)

"Abawacabacteriales" (RBG-16-42-10)

"Peregrinibacterales" (UBA1369)

"Fertabacterales" (UBA4473)

"Peribacterales"

Phylogeny of ABY1[12][10]

"Kerfeldbacterales" (SBBC01)

"Jacksonbacterales" (UBA9629)

"Kuenenbacterales" (UBA2196)

"Veblenbacterales"

"Komeilibacterales" (UBA1558)

"Falkowbacterales" (BM507)

"Buchananbacterales"

"Uhrbacterales" (GWA2-46-9)

"Magasanikbacterales"

Phylogeny of Paceibacteria[12][10]

"Moranbacterales"

UBA9983_A

"Nomurabacteraceae" (UBA9973)

"Vogelbacteraceae" (XYD1-FULL-46-19)

"Yonathbacteraceae" (UBA1539)

"Taylorbacteraceae" (UBA11359_A)

"Zambryskibacteraceae"

"Kaiserbacteraceae" (UBA2163)

"Campbellbacteraceae" (CSBR16-193)

UBA6257

"Brennerbacteraceae"

"Jorgensenbacteraceae" (GWB1-50-10)

"Liptonbacteraceae" (2-01-FULL-56-20)

"Wolfebacteraceae" (UBA9933)

"Colwellbacteraceae" (UBA9933)

"Harrisonbacteraceae" (WO2-44-18)

"Parcunitrobacterales"

"Portnoybacterales"

"Paceibacterales"

"Gribaldobacteraceae" (CG1-02-41-26)

"Nealsonbacteraceae" (PWPS01)

"Wildermuthbacteraceae" (UBA10102)

"Staskawiczbacteraceae"

"Paceibacteraceae" ("Parcubacteria")

"Azambacterales" (UBA10092)

"Terrybacterales"

"Yanofskybacterales" (2-02-FULL-40-12)

"Spechtbacterales"

"Sungbacterales"

"Ryanbacterales"

"Tagabacterales"

"WO2‑41‑13"

"Giovannonibacteraceae" (2-01-FULL-45-33)

"Niyogibacteraceae" (1-14-0-10-42-19)

The current phylogeny is based on ribosomal proteins (Hug et al., 2016).[3] Other approaches, including protein family existence and 16S ribosomal RNA, produce similar results at lower resolutions.[13][1]

See also[edit]

References[edit]

  1. Jump up to: a b c Danczak RE, Johnston MD, Kenah C, Slattery M, Wrighton KC, Wilkins MJ (September 2017). "Members of the candidate phyla radiation are functionally differentiated by carbon- and nitrogen-cycling capabilities"Microbiome5 (1): 112. doi:10.1186/s40168-017-0331-1PMC 5581439PMID 28865481.
  2. ^ Parks, Donovan; Chuvochina, Maria; Waite, David; Rinke, Christian; Skarshewski, Adam; Chaumeil, Pierre-Alain; Hugenholtz, Philip (27 August 2018). "A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life"Nature Biotechnology36 (10): 996–1004. doi:10.1038/nbt.4229PMID 30148503S2CID 52093100. Retrieved 13 January 2021.
  3. Jump up to: a b c d Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. (April 2016). "A new view of the tree of life"Nature Microbiology1 (5): 16048. doi:10.1038/nmicrobiol.2016.48PMID 27572647.
  4. Jump up to: a b c d Castelle CJ, Banfield JF (March 2018). "Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life"Cell172 (6): 1181–1197. doi:10.1016/j.cell.2018.02.016PMID 29522741.
  5. Jump up to: a b Rinke C; et al. (2013). "Insights into the phylogeny and coding potential of microbial dark matter"Nature499 (7459): 431–7. Bibcode:2013Natur.499..431Rdoi:10.1038/nature12352PMID 23851394.
  6. ^ Beam, Jacob P.; Becraft, Eric D.; Brown, Julia M.; Schulz, Frederik; Jarett, Jessica K.; Bezuidt, Oliver; Poulton, Nicole J.; Clark, Kayla; Dunfield, Peter F.; Ravin, Nikolai V.; Spear, John R.; Hedlund, Brian P.; Kormas, Konstantinos A.; Sievert, Stefan M.; Elshahed, Mostafa S.; Barton, Hazel A.; Stott, Matthew B.; Eisen, Jonathan A.; Moser, Duane P.; Onstott, Tullis C.; Woyke, Tanja; Stepanauskas, Ramunas (2020). "Ancestral Absence of Electron Transport Chains in Patescibacteria and DPANN"Frontiers in Microbiology11: 1848. doi:10.3389/fmicb.2020.01848PMC 7507113PMID 33013724.
  7. Jump up to: a b Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, et al. (July 2015). "Unusual biology across a group comprising more than 15% of domain Bacteria". Nature523 (7559): 208–11. Bibcode:2015Natur.523..208Bdoi:10.1038/nature14486OSTI 1512215PMID 26083755S2CID 4397558.
  8. ^ Belfort M, Reaban ME, Coetzee T, Dalgaard JZ (July 1995). "Prokaryotic introns and inteins: a panoply of form and function"Journal of Bacteriology177 (14): 3897–903. doi:10.1128/jb.177.14.3897-3903.1995PMC 177115PMID 7608058.
  9. ^ Coleman, Gareth A.; Davín, Adrián A.; Mahendrarajah, Tara; Spang, Anja; Hugenholtz, Philip; Szöllősi, Gergely J.; Williams, Tom A. (15 July 2020). "A rooted phylogeny resolves early bacterial evolution". bioRxiv 10.1101/2020.07.15.205187.
  10. Jump up to: a b c d e f "GTDB release 06-RS202"Genome Taxonomy Database.
  11. ^ Sayers. "Patescibacteria group"National Center for Biotechnology Information(NCBI) taxonomy database. Retrieved 2021-03-20.
  12. Jump up to: a b c d e Mendler, K; Chen, H; Parks, DH; Hug, LA; Doxey, AC (2019). "AnnoTree: visualization and exploration of a functionally annotated microbial tree of life"Nucleic Acids Research47 (9): 4442–4448. doi:10.1093/nar/gkz246PMC 6511854PMID 31081040.
  13. ^ Méheust, Raphaël; Burstein, David; Castelle, Cindy J.; Banfield, Jillian F. (13 September 2019). "The distinction of CPR bacteria from other bacteria based on protein family content"Nature Communications10 (1): 4173. Bibcode:2019NatCo..10.4173Mdoi:10.1038/s41467-019-12171-zPMC 6744442PMID 31519891.

https://en.wikipedia.org/wiki/Candidate_phyla_radiation


List of select agents[edit]

Tier 1 BSATs are indicated by an asterisk (*).[3]

HHS select agents and toxins[edit]

Bacteria[edit]

Viruses[edit]

Toxins[edit]

As of April 2021 these biological agents and toxins are considered to "have the potential to pose a severe threat to both human and animal health, to plant health, or to animal and plant products".[6]

Overlap select agents and toxins[edit]

Bacteria[edit]

Viruses[edit]

USDA select agents and toxins[edit]

For animals[edit]

Bacteria[edit]
  • Mycoplasma mycoides subspecies mycoides small colony (Mmm SC) (contagious bovine pleuropneumonia)
Viruses[edit]

For plants[edit]

Bacteria[edit]
Fungi or fungus-like pathogens[edit]

List of former select agents[edit]

Select agent regulations were revised in October 2012 to remove 19 BSATs from the list (7 Human and Overlap Agents and 12 Animal Agents).[7]

Human and overlap agents[edit]

Animal agents[edit]

See also[edit]

https://en.wikipedia.org/wiki/Select_agent



above. 

LeToya Luckett - Back 2 Life (Official Music Video)

No comments:

Post a Comment