A neutron supermirror is a highly polished, layered material used to reflect neutron beams. Supermirrors are a special case of multi-layer neutron reflectors with varying layer thicknesses.[1]
The first neutron supermirror concept was proposed by Mezei,[2] inspired by earlier work with x-rays.
Supermirrors are produced by depositing alternating layers of strongly contrasting substances, such as nickel and titanium, on a smooth substrate. A single layer of high refractive index material (e.g. nickel) exhibits total external reflection at small grazing angles up to a critical angle . For nickel with natural isotopic abundances, in degrees is approximately where is the neutron wavelength in Angstrom units.
A mirror with a larger effective critical angle can be made by exploiting diffraction (with non-zero losses) that occurs from stacked multilayers.[3] The critical angle of total reflection, in degrees, becomes approximately , where is the "m-value" relative to natural nickel. values in the range of 1-3 are common, in specific areas for high-divergence (e.g. using focussing optics near the source, choppers, or experimental areas) m=6 is readily available.
Nickel has a positive scattering cross section, and titanium has a negative scattering cross section, and in both elements the absorption cross section is small, which makes Ni-Ti the most efficient technology with neutrons. The number of Ni-Ti layers needed increases rapidly as , with in the range 2-4, which affects the cost. This has a strong bearing on the economic strategy of neutron instrument design.[4]
https://en.wikipedia.org/wiki/Neutron_supermirror
No comments:
Post a Comment