Blog Archive

Friday, September 17, 2021

09-17-2021-0000 - supersymmetric theory supersymmetry

In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist.[1]Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi-Dirac statistics.[2][3] In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a "selectron" (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly "unbroken" supersymmetry, each pair of superpartners would share the same mass and internal quantum numbers besides spin. More complex supersymmetry theories have a spontaneously broken symmetry, allowing superpartners to differ in mass.[4][5][6]

Supersymmetry has various applications to different areas of physics, such as quantum mechanicsstatistical mechanicsquantum field theorycondensed matter physicsnuclear physicsopticsstochastic dynamicsparticle physicsastrophysicsquantum gravitystring theory, and cosmology. Supersymmetry has also been applied outside of physics, such as in finance. In particle physics, a supersymmetric extension of the Standard Model is a possible candidate for physics beyond the Standard Model, and in cosmology, supersymmetry could explain the issue of cosmological inflation

In quantum field theory, supersymmetry is motivated by solutions to several theoretical problems, for generally providing many desirable mathematical properties, and for ensuring sensible behavior at high energies. Supersymmetric quantum field theory is often much easier to analyze, as many more problems become mathematically tractable. When supersymmetry is imposed as a local symmetry, Einstein's theory of general relativity is included automatically, and the result is said to be a theory of supergravity. Another theoretically appealing property of supersymmetry is that it offers the only "loophole" to the Coleman–Mandula theorem, which prohibits spacetime and internal symmetries from being combined in any nontrivial way, for quantum field theories with very general assumptions. The Haag–Łopuszański–Sohnius theorem demonstrates that supersymmetry is the only way spacetime and internal symmetries can be combined consistently.[7]

https://en.wikipedia.org/wiki/Supersymmetry 

 In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist.[1]Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi-Dirac statistics.[2][3] In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a "selectron" (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly "unbroken" supersymmetry, each pair of superpartners would share the same mass and internal quantum numbers besides spin. More complex supersymmetry theories have a spontaneously broken symmetry, allowing superpartners to differ in mass.[4][5][6]

Supersymmetry has various applications to different areas of physics, such as quantum mechanicsstatistical mechanicsquantum field theorycondensed matter physicsnuclear physicsopticsstochastic dynamicsparticle physicsastrophysicsquantum gravitystring theory, and cosmology. Supersymmetry has also been applied outside of physics, such as in finance. In particle physics, a supersymmetric extension of the Standard Model is a possible candidate for physics beyond the Standard Model, and in cosmology, supersymmetry could explain the issue of cosmological inflation

In quantum field theory, supersymmetry is motivated by solutions to several theoretical problems, for generally providing many desirable mathematical properties, and for ensuring sensible behavior at high energies. Supersymmetric quantum field theory is often much easier to analyze, as many more problems become mathematically tractable. When supersymmetry is imposed as a local symmetry, Einstein's theory of general relativity is included automatically, and the result is said to be a theory of supergravity. Another theoretically appealing property of supersymmetry is that it offers the only "loophole" to the Coleman–Mandula theorem, which prohibits spacetime and internal symmetries from being combined in any nontrivial way, for quantum field theories with very general assumptions. The Haag–Łopuszański–Sohnius theorem demonstrates that supersymmetry is the only way spacetime and internal symmetries can be combined consistently.[7]

Supersymmetric quantum mechanics[edit]

Supersymmetric quantum mechanics adds the SUSY superalgebra to quantum mechanics as opposed to quantum field theory. Supersymmetric quantum mechanics often becomes relevant when studying the dynamics of supersymmetric solitons, and due to the simplified nature of having fields which are only functions of time (rather than space-time), a great deal of progress has been made in this subject and it is now studied in its own right.

SUSY quantum mechanics involves pairs of Hamiltonians which share a particular mathematical relationship, which are called partner Hamiltonians. (The potential energy terms which occur in the Hamiltonians are then known as partner potentials.) An introductory theorem shows that for every eigenstate of one Hamiltonian, its partner Hamiltonian has a corresponding eigenstate with the same energy. This fact can be exploited to deduce many properties of the eigenstate spectrum. It is analogous to the original description of SUSY, which referred to bosons and fermions. We can imagine a "bosonic Hamiltonian", whose eigenstates are the various bosons of our theory. The SUSY partner of this Hamiltonian would be "fermionic", and its eigenstates would be the theory's fermions. Each boson would have a fermionic partner of equal energy.

In finance[edit]

In 2021, supersymmetric quantum mechanics was applied to option pricing and the analysis of markets in finance,[19] and to financial networks.[20]

Supersymmetry in condensed matter physics[edit]

SUSY concepts have provided useful extensions to the WKB approximation. Additionally, SUSY has been applied to disorder averaged systems both quantum and non-quantum (through statistical mechanics), the Fokker–Planck equation being an example of a non-quantum theory. The 'supersymmetry' in all these systems arises from the fact that one is modelling one particle and as such the 'statistics' do not matter. The use of the supersymmetry method provides a mathematical rigorous alternative to the replica trick, but only in non-interacting systems, which attempts to address the so-called 'problem of the denominator' under disorder averaging. For more on the applications of supersymmetry in condensed matter physics see Efetov (1997).[21]

In 2021, a group of researchers showed that, in theory,  SUSY could be realised at the edge of a Moore-Read quantum Hall state.[22] However, to date, no experiments have been done yet to realise it at an edge of a Moore-Read state.

Supersymmetry in optics[edit]

In 2013, integrated optics was found[23] to provide a fertile ground on which certain ramifications of SUSY can be explored in readily-accessible laboratory settings. Making use of the analogous mathematical structure of the quantum-mechanical Schrödinger equation and the wave equation governing the evolution of light in one-dimensional settings, one may interpret the refractive indexdistribution of a structure as a potential landscape in which optical wave packets propagate. In this manner, a new class of functional optical structures with possible applications in phase matching, mode conversion[24] and space-division multiplexing becomes possible. SUSY transformations have been also proposed as a way to address inverse scattering problems in optics and as a one-dimensional transformation optics.[25]

Supersymmetry in dynamical systems[edit]

All stochastic (partial) differential equations, the models for all types of continuous time dynamical systems, possess topological supersymmetry.[26][27] In the operator representation of stochastic evolution, the topological supersymmetry is the exterior derivativewhich is commutative with the stochastic evolution operator defined as the stochastically averaged pullback induced on differential forms by SDE-defined diffeomorphisms of the phase space. The topological sector of the so-emerging supersymmetric theory of stochastic dynamics can be recognized as the Witten-type topological field theory.

The meaning of the topological supersymmetry in dynamical systems is the preservation of the phase space continuity—infinitely close points will remain close during continuous time evolution even in the presence of noise. When the topological supersymmetry is broken spontaneously, this property is violated in the limit of the infinitely long temporal evolution and the model can be said to exhibit (the stochastic generalization of) the butterfly effect. From a more general perspective, spontaneous breakdown of the topological supersymmetry is the theoretical essence of the ubiquitous dynamical phenomenon variously known as chaosturbulenceself-organized criticality etc. The Goldstone theorem explains the associated emergence of the long-range dynamical behavior that manifests itself as 1/f noisebutterfly effect, and the scale-free statistics of sudden (instantonic) processes, such as earthquakes, neuroavalanches, and solar flares, known as the Zipf's law and the Richter scale.

https://en.wikipedia.org/wiki/Supersymmetry

No comments:

Post a Comment