Blog Archive

Friday, September 17, 2021

09-17-2021-0220 - irreducible representation

 In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation  or irrep of an algebraic structure  is a nonzero representation that has no proper nontrivial subrepresentation , with closed under the action of .

Every finite-dimensional unitary representation on a Hilbert space  is the direct sum of irreducible representations. Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but converse may not hold, e.g. the two-dimensional representation of the real numbers acting by upper triangular unipotent matrices is indecomposable but reducible.

https://en.wikipedia.org/wiki/Irreducible_representation

No comments:

Post a Comment