Blog Archive

Friday, September 17, 2021

09-17-2021-0127 - Quark–gluon plasma or QGP

Quark–gluon plasma or QGP is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word plasmasignals that free color charges are allowed. In a 1987 summary, Léon van Hove pointed out the equivalence of the three terms: quark gluon plasma, quark matter and a new state of matter.[2] Since the temperature is above the Hagedorn temperature—and thus above the scale of light u,d-quark mass—the pressure exhibits the relativistic Stefan-Boltzmann format governed by fourth power of temperature and many practically mass free quark and gluon constituents. We can say that QGP emerges to be the new phase of strongly interacting matter which manifests its physical properties in terms of nearly free dynamics of practically massless gluons and quarks. Both quarks and gluons must be present in conditions near chemical (yield) equilibrium with their colour charge open for a new state of matter to be referred to as QGP.

Quark–gluon plasma filled the entire Universe before matter was created. Theories predicting the existence of quark–gluon plasma were developed in the late 1970s and early 1980s.[3] Discussions around heavy ion experimentation followed suit[4][5][6][7][8] and the first experiment proposals were put forward at CERN[9][10][11][12][13][14] and BNL[15][16] in the following years. Quark–gluon plasma[17][18] was detected for the first time in the laboratory at CERN in the year 2000.[19][20][21]

QCD phase diagram. Adapted from original made by R.S. Bhalerao.[1]

Timeline of the CERN-SPS relativistic heavy ion program before QGP discovery.[19]

General introduction[edit]

Quark–gluon plasma is a state of matter in which the elementary particles that make up the hadrons of baryonic matter are freed of their strong attraction for one another under extremely high energy densities. These particles are the quarks and gluons that compose baryonic matter.[22] In normal matter quarks are confined; in the QGP quarks are deconfined. In classical QCD quarks are the fermionic components of hadrons (mesons and baryons) while the gluons are considered the bosonic components of such particles. The gluons are the force carriers, or bosons, of the QCD color force, while the quarks by themselves are their fermionic matter counterparts.

Quark–gluon plasma is studied to recreate and understand the high energy density conditions prevailing in the Universe when matter formed from elementary degrees of freedom (quarks, gluons) at about 20μs after the Big Bang. Experimental groups are probing over a ‘large’ distance the (de)confining quantum vacuum structure, the present day relativistic æther, which determines prevailing form of matter and laws of nature. The experiments give insight to the origin of matter and mass: the matter and antimatter is created when the quark–gluon plasma ‘hadronizes’ and the mass of matter originates in the confining vacuum structure.[19]

How the quark–gluon plasma fits into the general scheme of physics[edit]

QCD is one part of the modern theory of particle physics called the Standard Model. Other parts of this theory deal with electroweak interactions and neutrinos. The theory of electrodynamics has been tested and found correct to a few parts in a billion. The theory of weak interactions has been tested and found correct to a few parts in a thousand. Perturbative forms of QCD have been tested to a few percent.[23] Perturbative models assume relatively small changes from the ground state, i.e. relatively low temperatures and densities, which simplifies calculations at the cost of generality. In contrast, non-perturbative forms of QCD have barely been tested. The study of the QGP, which has both a high temperature and density, is part of this effort to consolidate the grand theory of particle physics.

The study of the QGP is also a testing ground for finite temperature field theory, a branch of theoretical physics which seeks to understand particle physics under conditions of high temperature. Such studies are important to understand the early evolution of our universe: the first hundred microseconds or so. It is crucial to the physics goals of a new generation of observations of the universe (WMAP and its successors). It is also of relevance to Grand Unification Theories which seek to unify the three fundamental forces of nature (excluding gravity).

Five reasons to study quark–gluon plasma. The background of the slide is based on the Sistine Chapel ceiling fresco "The Creation of Adam" by Michelangelo. This picture ornamented the poster  of the first quark–gluon plasma summer school "Particle Production in Highly Excited Matter".[24]

Reasons for studying the formation of quark–gluon plasma[edit]

The generally accepted model of the formation of the Universe states that it happened as the result of the Big Bang. In this model, in the time interval of 10−10–10−6 s after the Big Bang, matter existed in the form of a quark–gluon plasma. It is possible to reproduce the density and temperature of matter existing of that time in laboratory conditions to study the characteristics of the very early Universe. So far, the only possibility is the collision of two heavy atomic nuclei accelerated to energies of more than a hundred GeV. Using the result of a head-on collision in the volume approximately equal to the volume of the atomic nucleus, it is possible to model the density and temperature that existed in the first instants of the life of the Universe.

Relation to normal plasma[edit]

plasma is matter in which charges are screened due to the presence of other mobile charges. For example: Coulomb's Law is suppressed by the screening to yield a distance-dependent charge,  , i.e., the charge Q is reduced exponentially with the distance divided by a screening length α. In a QGP, the color charge of the quarks and gluons is screened. The QGP has other analogies with a normal plasma. There are also dissimilarities because the color charge is non-abelian, whereas the electric charge is abelian. Outside a finite volume of QGP the color-electric field is not screened, so that a volume of QGP must still be color-neutral. It will therefore, like a nucleus, have integer electric charge.

Because of the extremely high energies involved, quark-antiquark pairs are produced by pair production and thus QGP is a roughly equal mixture of quarks and antiquarks of various flavors, with only a slight excess of quarks. This property is not a general feature of conventional plasmas, which may be too cool for pair production (see however pair instability supernova).

Theory[edit]

One consequence of this difference is that the color charge is too large for perturbative computations which are the mainstay of QED. As a result, the main theoretical tools to explore the theory of the QGP is lattice gauge theory.[25][26] The transition temperature (approximately 175 MeV) was first predicted by lattice gauge theory. Since then lattice gauge theory has been used to predict many other properties of this kind of matter. The AdS/CFT correspondence conjecture may provide insights in QGP, moreover the ultimate goal of the fluid/gravity correspondence is to understand QGP. The QGP is believed to be a phase of QCD which is completely locally thermalized and thus suitable for an effective fluid dynamic description.

Production[edit]

Production of QGP in the laboratory is achieved by colliding heavy atomic nuclei (called heavy ions as in an accelerator atoms are ionized) at relativistic energy in which matter is heated well above the Hagedorn temperature TH= 150 MeV per particle, which amounts to a temperature exceeding 1.66×1012 K. This can be accomplished by colliding two large nuclei at high energy (note that 175 MeV is not the energy of the colliding beam). Lead and gold nuclei have been used for such collisions at CERN SPS and BNLRHIC, respectively. The nuclei are accelerated to ultrarelativistic speeds (contracting their length) and directed towards each other, creating a "fireball", in the rare event of a collision. Hydrodynamic simulation predicts this fireball will expand under its own pressure, and cool while expanding. By carefully studying the spherical and elliptic flow, experimentalists put the theory to test.

Diagnostic tools[edit]

There is an overwhelming evidence for production of quark–gluon plasma in relativistic heavy ion collisions.[27][28][29][30][31]

The important classes of experimental observations are

Expected properties[edit]

Thermodynamics[edit]

The cross-over temperature from the normal hadronic to the QGP phase is about 175 MeV. This "crossover" may actually not be only a qualitative feature, but instead one may have to do with a true (second order) phase transition, e.g. of the universality class of the three-dimensional Ising model. The phenomena involved correspond to an energy density of a little less than GeV/fm3. For relativistic matter, pressure and temperature are not independent variables, so the equation of state is a relation between the energy density and the pressure. This has been found through lattice computations, and compared to both perturbation theory and string theory. This is still a matter of active research. Response functions such as the specific heat and various quark number susceptibilities are currently being computed.

Flow[edit]

The discovery of the perfect liquid was a turning point in physics. Experiments at RHIC have revealed a wealth of information about this remarkable substance, which we now know to be a QGP.[32] Nuclear matter at "room temperature" is known to behave like a superfluid. When heated the nuclear fluid evaporates and turns into a dilute gas of nucleons and, upon further heating, a gas of baryons and mesons (hadrons). At the critical temperature, TH, the hadrons melt and the gas turns back into a liquid. RHIC experiments have shown that this is the most perfect liquid ever observed in any laboratory experiment at any scale. The new phase of matter, consisting of dissolved hadrons, exhibits less resistance to flow than any other known substance. The experiments at RHIC have, already in 2005, shown that the Universe at its beginning was uniformly filled with this type of material—a super-liquid—which once the Universe cooled below TH evaporated into a gas of hadrons. Detailed measurements show that this liquid is a quark–gluon plasma where quarks, antiquarks and gluons flow independently.[33]

Schematic representation of the interaction region formed in the first moments after the collision of heavy ions with high energies in the accelerator.[34]

In short, a quark–gluon plasma flows like a splat of liquid, and because it's not "transparent" with respect to quarks, it can attenuate jets emitted by collisions. Furthermore, once formed, a ball of quark–gluon plasma, like any hot object, transfers heat internally by radiation. However, unlike in everyday objects, there is enough energy available so that gluons(particles mediating the strong force) collide and produce an excess of the heavy (i.e. high-energystrange quarks. Whereas, if the QGP didn't exist and there was a pure collision, the same energy would be converted into a non-equilibrium mixture containing even heavier quarks such as charm quarks or bottom quarks.[34][35]

The equation of state is an important input into the flow equations. The speed of sound (speed of QGP-density oscillations) is currently under investigation in lattice computations.[36][37][38] The mean free path of quarks and gluons has been computed using perturbation theory as well as string theoryLattice computations have been slower here, although the first computations of transport coefficients have been concluded.[39][40] These indicate that the mean free time of quarks and gluons in the QGP may be comparable to the average interparticle spacing: hence the QGP is a liquid as far as its flow properties go. This is very much an active field of research, and these conclusions may evolve rapidly. The incorporation of dissipative phenomena into hydrodynamics is another active research area.[41][42][43]

Jet quenching effect[edit]

Detailed predictions were made in the late 1970s for the production of jets at the CERN Super Proton–Antiproton Synchrotron.[44][45][46][47] UA2 observed the first evidence for jet production in hadron collisions in 1981,[48] which shortly after was confirmed by UA1.[49]

The subject was later revived at RHIC. One of the most striking physical effects obtained at RHIC energies is the effect of quenching jets.[50][51][52] At the first stage of interaction of colliding relativistic nuclei, partons of the colliding nuclei give rise to the secondary partons with a large transverse impulse ≥ 3–6 GeV / s. Passing through a highly heated compressed plasma, partons lose energy. The magnitude of the energy loss by the parton depends on the properties of the quark–gluon plasma (temperature, density). In addition, it is also necessary to take into account the fact that colored quarks and gluons are the elementary objects of the plasma, which differs from the energy loss by a parton in a medium consisting of colorless hadrons. Under the conditions of a quark–gluon plasma, the energy losses resulting from the RHIC energies by partons are estimated as dE / dx = 1 GeV / fm. This conclusion is confirmed by comparing the relative yield of hadrons with a large transverse impulse in nucleon-nucleon and nucleus-nucleus collisions at the same collision energy. The energy loss by partons with a large transverse impulse in nucleon-nucleon collisions is much smaller than in nucleus-nucleus collisions, which leads to a decrease in the yield of high-energy hadrons in nucleus-nucleus collisions. This result suggests that nuclear collisions cannot be regarded as a simple superposition of nucleon-nucleon collisions. For a short time, ~ 1 μs and in the final volume, quarks and gluons form some ideal liquid. The collective properties of this fluid are manifested during its movement as a whole. Therefore, when moving partons in this medium, it is necessary to take into account some collective properties of this quark–gluon liquid. Energy losses depend on the properties of the quark–gluon medium, on the parton density in the resulting fireball, and on the dynamics of its expansion. Losses of energy by light and heavy quarks during the passage of a fireball turn out to be approximately the same.[53]

In November 2010 CERN announced the first direct observation of jet quenching, based on experiments with heavy-ion collisions.[54][55][56][57]

Direct photons and dileptons[edit]

Direct photons and dileptons are arguably most penetrating tools to study relativistic heavy ion collisions. They are produced, by various mechanisms spanning the space-time evolution of the strongly interacting fireball.  They provide in principle a snapshot on the initial stage as well. They are hard to decipher and interpret as most of the signal is originating from hadron decays long after the QGP fireball has disintegrated.[58][59][60]

Glasma hypothesis[edit]

Since 2008, there is a discussion about a hypothetical precursor state of the quark–gluon plasma, the so-called "Glasma", where the dressed particles are condensed into some kind of glassy (or amorphous) state, below the genuine transition between the confined state and the plasma liquid.[61] This would be analogous to the formation of metallic glasses, or amorphous alloys of them, below the genuine onset of the liquid metallic state.

Although the experimental high temperatures and densities predicted as producing a quark–gluon plasma have been realized in the laboratory, the resulting matter does not behave as a quasi-ideal state of free quarks and gluons, but, rather, as an almost perfect dense fluid.[62] Actually, the fact that the quark–gluon plasma will not yet be "free" at temperatures realized at present accelerators was predicted in 1984 as a consequence of the remnant effects of confinement.[63][64]

In-laboratory formation of deconfined matter[edit]

A quark–gluon plasma (QGP)[65] or quark soup[66][67] is a state of matter in quantum chromodynamics (QCD) which exists at extremely high temperature and/or density. This state is thought to consist of asymptotically free strong-interacting quarks and gluons, which are ordinarily confined by color confinement inside atomic nuclei or other hadrons. This is in analogy with the conventional plasma where nuclei and electrons, confined inside atoms by electrostatic forces at ambient conditions, can move freely. Experiments to create artificial quark matter started at CERN in 1986/7, resulting in first claims that were published in 1991.[68][69] It took several years before the idea became accepted in the community of particle and nuclear physicists. Formation of a new state of matter in Pb-Pb collisions was officially announced at CERN in view of the convincing experimental results presented by the CERN SPS WA97 experiment in 1999,[70][31][71] and later elaborated by Brookhaven National Laboratory's Relativistic Heavy Ion Collider.[72][73][30] Quark matter can only be produced in minute quantities and is unstable and impossible to contain, and will radioactively decay within a fraction of a second into stable particles through hadronization; the produced hadrons or their decay products and gamma rays can then be detected. In the quark matter phase diagram, QGP is placed in the high-temperature, high-density regime, whereas ordinary matter is a cold and rarefied mixture of nuclei and vacuum, and the hypothetical quark stars would consist of relatively cold, but dense quark matter. It is believed that up to a few microseconds (10−12 to 10−6 seconds) after the Big Bang, known as the quark epoch, the Universe was in a quark–gluon plasma state.

The strength of the color force means that unlike the gas-like plasma, quark–gluon plasma behaves as a near-ideal Fermi liquid, although research on flow characteristics is ongoing.[74] Liquid or even near-perfect liquid flow with almost no frictional resistance or viscosity was claimed by research teams at RHIC[75] and LHC's Compact Muon Solenoid detector.[76] QGP differs from a "free" collision event by several features; for example, its particle content is indicative of a temporary chemical equilibrium producing an excess of middle-energy strange quarks vs. a nonequilibrium distribution mixing light and heavy quarks ("strangeness production"), and it does not allow particle jets to pass through ("jet quenching").

Experiments at CERN's Super Proton Synchrotron (SPS) begun experiments to create QGP in the 1980s and 1990s: the results led CERN to announce evidence for a "new state of matter"[77] in 2000.[78] Scientists at Brookhaven National Laboratory's Relativistic Heavy Ion Collider announced they had created quark–gluon plasma by colliding gold ions at nearly the speed of light, reaching temperatures of 4 trillion degrees Celsius.[79] Current experiments (2017) at the Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) on Long Island (NY, USA) and at CERN's recent Large Hadron Collider near Geneva (Switzerland) are continuing this effort,[80][81] by colliding relativistically accelerated gold and other ion species (at RHIC) or lead (at LHC) with each other or with protons.[81] Three experiments running on CERN's Large Hadron Collider (LHC), on the spectrometers ALICE,[82]ATLAS and CMS, have continued studying the properties of QGP. CERN temporarily ceased colliding protons, and began colliding lead ions for the ALICE experiment in 2011, in order to create a QGP.[83] A new record breaking temperature was set by ALICE: A Large Ion Collider Experiment at CERN in August 2012 in the ranges of 5.5 trillion (5.5×1012) kelvin as claimed in their Nature PR.[84]

The formation of a quark–gluon plasma occurs as a result of a strong interaction between the partons (quarksgluons) that make up the nucleons of the colliding heavy nuclei called heavy ions. Therefore experiments are referred to as relativistic heavy ion collision experiments. Theoretical and experimental works show that the formation of a quark–gluon plasma occurs at the temperature of T ≈ 150–160 MeV, the Hagedorn temperature, and an energy density of ≈ 0.4–1 GeV / fm3. While at first a phase transition was expected, present day theoretical interpretations propose a phase transformation similar to the process of ionisation of normal matter into ionic and electron plasma.[85][86][87][88][30]

Quark–gluon plasma and the onset of deconfinement[edit]

The central issue of the formation of a quark–gluon plasma is the research for the onset of deconfinement. From the beginning of the research on formation of QGP, the issue was whether energy density can be achieved in nucleus-nucleus collisions. This depends on how much energy each nucleon loses. A influential reaction picture was the scaling solution presented by Bjorken.[89]This model applies to ultra-high energy collisions. In experiments carried out at CERN SPS and BNL RHIC more complex situation arose, usually divided into three stages:[90]

  • Primary parton collisions and baryon stopping at the time of complete overlapping of the colliding nuclei.
  • Redistribution of particle energy and new particles born in the QGP fireball.
  • The fireball of QGP matter equilibrates and expands before hadronizing.

More and more experimental evidence points to the strength of QGP formation mechanisms—operating even in LHC-energy scale proton-proton collisions.[28]

Further reading[edit]

Books[edit]

  • open access Melting hadrons, boiling quarks : from Hagedorn temperature to ultra-relativistic heavy-ion collisions at CERN : with a tribute to Rolf Hagedorn, ed. J. Rafelski, 2016.[91]
  • Thermodynamics and equations of state of matter : from ideal gas to quark–gluon plasma, V. E Fortov, 2016.[92]
  • Quark–Gluon Plasma: Theoretical Foundations: An Annotated Reprint Collection, eds. J. Kapusta, B. MüllerJ. Rafelski, 2003.[17]
  • Quark–Gluon Plasma: From Big Bang to Little Bang, Kohsuke Yagi, Tetsuo Hatsuda, Yasuo Miake, 2005.[93]
  • Phenomenology of Ultra-Relativistic Heavy-Ion Collisions, Wojciech Florkowski, 2010.[94]
  • The Physics of the Quark–Gluon Plasma : Introductory Lectures, eds. Sourav Sarkar, Helmut Satz, Bikash Sinha, 2010.[95]
  • Relativistic Heavy Ion Physics. Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms. 23, 2010.[96]
  • Quark Gluon Plasma and Hadron Physics, eds. P. K. Sahu, S. C. Phatak, Yogendra Pathak Viyogi, 2009.[97]
  • Hadrons and Quark–Gluon Plasma, J. Letessier, J. Rafelski, 2002.[90]
  • The Physics of the Quark–Gluon Plasma, B. Müller, 1985.[98]

Review articles with a historical perspective of the field[edit]

  • Brief history of the search for critical structures in heavy-ion collisions, Marek Gazdzicki, Mark Gorenstein, Peter Seyboth, 2020.[99]
  • Discovery of quark–gluon plasma: strangeness diaries, Johann Rafelski, 2020.[100]
  • Phenomenological review on quark–gluon plasma: concepts vs. observations, Roman Pasechnik, Michal Šumbera, 2017.[101]
  • Quark matter: the beginning, Helmut Satz, Reinhard Stock, 2016.[102]
  • Four heavy-ion experiments at the CERN-SPS: A trip down memory lane, Emanuele Quercigh, 2012.[14]
  • On the history of multi-particle production in high energy collisions, Marek Gazdzicki, 2012.[103]
  • Strangeness and the quark–gluon plasma: thirty years of discovery, Berndt Müller, 2012.[104]
  • From SPS to RHIC: Maurice and the CERN heavy-ion programme, Ulrich W. Heinz, 2008.[105]
  • RHIC: From dreams to beams in two decades, Gordon Baym, 2002.[106]

See also[edit]

References[edit]

  1. ^ Bhalerao, Rajeev S. (2014). "Relativistic heavy-ion collisions". In Mulders, M.; Kawagoe, K. (eds.). 1st Asia-Europe-Pacific School of High-Energy Physics. CERN Yellow Reports: School Proceedings. CERN-2014-001, KEK-Proceedings-2013–8. Geneva: CERN. pp. 219–239. doi:10.5170/CERN-2014-001ISBN 9789290833994OCLC 801745660S2CID 119256218.
  2. ^ Van Hove, Léon Charles Prudent (1987). Theoretical prediction of a new state of matter, the "quark-gluon plasma" (also called "quark matter").
  3. ^ Satz, H. (1981). Statistical Mechanics of Quarks and Hadrons: Proceedings of an International Symposium Held at the University of Bielefeld, F.R.G., August 24-31, 1980. North-Holland. ISBN 978-0-444-86227-3.
  4. ^ Cocconi, G. (January 1974). "Developments at CERN". Report of the workshop on GeV/nucleon collisions of heavy ions: how and why, November 29--December 1, 1974, Bear Mountain, New York. p. 78. OSTI 4061527.
  5. ^ Webb, C. (1979). First workshop on ultra-relativistic nuclear collisions, LBL, May 21-24, 1979 (Report). LBL-8957. OSTI 5187301.
  6. ^ Nakai, Kōji; Goldhaber, A. S.; Shinkōkai, Nihon Gakujutsu; Foundation (U.S.), National Science (1980). High-energy nuclear interactions and properties of dense nuclear matter: proceedings of the Hakone Seminar (Japan-U.S. Joint Seminar) held at Hakone, from July 7 to 11, 1980. Tokyo: Hayashi-Kobo.
  7. ^ Darmstadt), Workshop on Future Relativistic Heavy Ion Experiments (1980 (1981). Proceedings: GSI Darmstadt, October 7-10, 1980. GSI.
  8. ^ 5th High Energy Heavy Ion Study, May 18-22, 1981: proceedings. LBL-12652. Lawrence Berkeley Laboratory, University of California. 1981. OSTI 5161227.
  9. ^ CERN. Geneva. Proton Synchrotron and Synchrocyclotron Committee, ed. (1980). Letter of intent: study of particle production and target fragmentation in central Ne on Pb reactions at 12 GeV per nucleon energy of the CERN PS external beam.
  10. ^ CERN. Geneva. Proton Synchrotron and Synchrocyclotron Committee, ed. (1982). Study of relativistic nucleus-nucleus reactions induced by O beams of 9-13 GeV per nucleon at the CERN PS. Geneva: CERN.
  11. ^ Middelkoop, Willem Cornelis (1982). Remarks on the possible use of the SPS for 0 ion beams. CERN. Geneva. SPS Experiments Committee. Geneva: CERN.
  12. ^ CERN. Geneva. SPS Experiments Committee, ed. (1983). Proposal to the SPSC: use of the  facility for p-, -, and 0-uranium collisions (CERN-SPSC-83-54). Geneva: CERN.
  13. ^ Albrow, M. G. (1983). "Experiments with nuclear beams and targets". In Mannelli, Italo (ed.). Workshop on SPS Fixed-target Physics in the Years 1984-1989, CERN, Geneva, Switzerland, 6 - 10 Dec 1982. CERN-83-02. 2. Geneva: CERN. pp. 462–476. doi:10.5170/CERN-1983-002-V-2.462.
  14. Jump up to: a b Quercigh, E. (2012). "Four heavy-ion experiments at the CERN-SPS: A trip down memory lane"Acta Physica Polonica B43 (4): 771. doi:10.5506/APhysPolB.43.771ISSN 0587-4254.
  15. ^ "Report of task force for relativistic heavy ion physics"Nuclear Physics A418: 657–668. 1984. Bibcode:1984NuPhA.418..657.doi:10.1016/0375-9474(84)90584-0.
  16. ^ Laboratory, Brookhaven National (1983). Proposal for a 15A-GeV Heavy Ion Facility at Brookhaven. BNL 32250. Brookhaven National Laboratory.
  17. Jump up to: a b Kapusta, J. I.; Müller, B.; Rafelski, Johann, eds. (2003). Quark–gluon plasma: theoretical foundations. Amsterdam: North-Holland. ISBN 978-0-444-51110-2.
  18. ^ Jacob, M.; Tran Thanh Van, J. (1982). "Quark matter formation and heavy ion collisions"Physics Reports88 (5): 321–413. doi:10.1016/0370-1573(82)90083-7.
  19. Jump up to: a b c Rafelski, Johann (2015). "Melting hadrons, boiling quarks". The European Physical Journal A51 (9): 114. arXiv:1508.03260Bibcode:2015EPJA...51..114Rdoi:10.1140/epja/i2015-15114-0ISSN 1434-6001S2CID 119191818.
  20. ^ Heinz, Ulrich; Jacob, Maurice (2000-02-16). "Evidence for a New State of Matter: An Assessment of the Results from the CERN Lead Beam Programme". arXiv:nucl-th/0002042.
  21. ^ Glanz, James (2000-02-10). "Particle Physicists Getting Closer To the Bang That Started It All"The New York TimesISSN 0362-4331. Retrieved 2020-05-10.
  22. ^ "Infocenter ILGTI: Indian Lattice Gauge Theory Initiative". Archived from the original on February 12, 2005. Retrieved May 20, 2005.
  23. ^ Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; Antonelli, M. (2018). "Review of Particle Physics" (PDF)Physical Review D98 (3): 1–708. Bibcode:2018PhRvD..98c0001Tdoi:10.1103/PhysRevD.98.030001ISSN 2470-0010PMID 10020536.
  24. ^ Gutbrod, Hans H.; Rafelski, Johann, eds. (1993). Particle Production in Highly Excited Matter. NATO ASI Series. 303. Boston, MA: Springer US. doi:10.1007/978-1-4615-2940-8ISBN 978-1-4613-6277-7.
  25. ^ Karsch, F. (1995). "The phase transition to the quark gluon plasma: Recent results from lattice calculations". Nuclear Physics A590 (1–2): 367–381. arXiv:hep-lat/9503010Bibcode:1995NuPhA.590..367Kdoi:10.1016/0375-9474(95)00248-YS2CID 118967199.
  26. ^ Satz, Helmut (2011). "The Quark–Gluon Plasma". Nuclear Physics A. 862–863 (12): 4–12. arXiv:1101.3937Bibcode:2011NuPhA.862....4Sdoi:10.1016/j.nuclphysa.2011.05.014S2CID 118369368.
  27. ^ Busza, Wit; Rajagopal, Krishna; van der Schee, Wilke (2018). "Heavy ion collisions: The big picture and the big questions"Annual Review of Nuclear and Particle Science68 (1): 339–376. arXiv:1802.04801Bibcode:2018ARNPS..68..339Bdoi:10.1146/annurev-nucl-101917-020852ISSN 0163-8998S2CID 119264938.
  28. Jump up to: a b ALICE Collaboration (2017). "Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions"Nature Physics13 (6): 535–539. arXiv:1606.07424Bibcode:2017NatPh..13..535Adoi:10.1038/nphys4111ISSN 1745-2473.
  29. ^ Koch, Peter; Müller, Berndt; Rafelski, Johann (2017). "From strangeness enhancement to quark–gluon plasma discovery". International Journal of Modern Physics A32 (31): 1730024–272. arXiv:1708.08115Bibcode:2017IJMPA..3230024Kdoi:10.1142/S0217751X17300241ISSN 0217-751XS2CID 119421190.
  30. Jump up to: a b c Ludlam, T.; Aronson, S. (2005). Hunting the quark gluon plasma (PDF) (Report). Brookhaven National Laboratory. doi:10.2172/15015225. BNL-73847-2005.
  31. Jump up to: a b The WA97 Collaboration (2000). "Transverse mass spectra of strange and multi–strange particles in Pb–Pb collisions at 158 A GeV/c"The European Physical Journal C14 (4): 633–641. Bibcode:2000EPJC...14..633Wdoi:10.1007/s100520000386ISSN 1434-6044S2CID 195312472.
  32. ^ "Celebrating a Decade of Brewing Perfection"Brookhaven National Laboratory. 26 June 2015. Archived from the original on 28 June 2017. Retrieved 2020-04-15Berndt Müller, Brookhaven Lab’s Associate Laboratory Director for Nuclear and Particle Physics.
  33. ^ Letter from Berndt Müller to Johann Rafelski, reproduced in "Discovery of Quark–Gluon Plasma: Strangeness Diaries". The European Physical Journal Special Topics. 229 (1): pp.40–41 doi:10.1140/epjst/e2019-900263-x. ISSN 1951-6401.
  34. Jump up to: a b Ollitrault, Jean-Yves (1992). "Anisotropy as a signature of transverse collective flow". Physical Review D46 (1): 229–245. Bibcode:1992PhRvD..46..229Odoi:10.1103/PhysRevD.46.229ISSN 0556-2821PMID 10014754.
  35. ^ Borghini, Nicolas; Dinh, Phuong Mai; Ollitrault, Jean-Yves (2001). "Flow analysis from multiparticle azimuthal correlations". Physical Review C64 (5): 054901. arXiv:nucl-th/0105040Bibcode:2001PhRvC..64e4901Bdoi:10.1103/PhysRevC.64.054901ISSN 0556-2813S2CID 119069389.
  36. ^ Borsányi, Szabolcs; Endrődi, Gergely; Fodor, Zoltán; Jakovác, Antal; Katz, Sándor D.; Krieg, Stefan; Ratti, Claudia; Szabó, Kálmán K. (2010). "The QCD equation of state with dynamical quarks". Journal of High Energy Physics2010 (11): 77. arXiv:1007.2580Bibcode:2010JHEP...11..077Bdoi:10.1007/JHEP11(2010)077ISSN 1029-8479S2CID 55793321.
  37. ^ Bazavov, A.; Bhattacharya, Tanmoy; DeTar, C.; Ding, H.-T.; Gottlieb, Steven; Gupta, Rajan; Hegde, P.; Heller, U. M.; Karsch, F.; Laermann, E.; Levkova, L. (2014). "Equation of state in ( 2 + 1 )-flavor QCD". Physical Review D90 (9): 094503. arXiv:1407.6387Bibcode:2014PhRvD..90i4503Bdoi:10.1103/PhysRevD.90.094503ISSN 1550-7998S2CID 116984453.
  38. ^ Borsanyi, S.; Fodor, Z.; Guenther, J.; Kampert, K.-H.; Katz, S. D.; Kawanai, T.; Kovacs, T. G.; Mages, S. W.; Pasztor, A.; Pittler, F.; Redondo, J. (2016). "Calculation of the axion mass based on high-temperature lattice quantum chromodynamics"Nature539 (7627): 69–71. Bibcode:2016Natur.539...69Bdoi:10.1038/nature20115ISSN 0028-0836PMID 27808190S2CID 2943966.
  39. ^ Hirano, Tetsufumi; Gyulassy, Miklos (2006). "Perfect fluidity of the quark–gluon plasma core as seen through its dissipative hadronic corona". Nuclear Physics A769: 71–94. arXiv:nucl-th/0506049Bibcode:2006NuPhA.769...71Hdoi:10.1016/j.nuclphysa.2006.02.005S2CID 13047563.
  40. ^ Kharzeev, Dmitri; Tuchin, Kirill (2008). "Bulk viscosity of QCD matter near the critical temperature"Journal of High Energy Physics2008 (9): 093. arXiv:0705.4280Bibcode:2008JHEP...09..093Kdoi:10.1088/1126-6708/2008/09/093ISSN 1029-8479S2CID 20224239.
  41. ^ Blaizot, J. P.; Ollitrault, J. Y. (1987). "Structure of hydrodynamic flows in expanding quark–gluon plasmas". Physical Review D36 (3): 916–927. Bibcode:1987PhRvD..36..916Bdoi:10.1103/PhysRevD.36.916ISSN 0556-2821PMID 9958246.
  42. ^ Gardim, Fernando G.; Grassi, Frédérique; Luzum, Matthew; Ollitrault, Jean-Yves (2012). "Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions". Physical Review C85 (2): 024908. arXiv:1111.6538Bibcode:2012PhRvC..85b4908Gdoi:10.1103/PhysRevC.85.024908ISSN 0556-2813S2CID 119187493.
  43. ^ Gale, Charles; Jeon, Sangyong; Schenke, Björn (2013). "Hydrodynamic modeling of heavy-ion collisions". International Journal of Modern Physics A28 (11): 1340011. arXiv:1301.5893Bibcode:2013IJMPA..2840011Gdoi:10.1142/S0217751X13400113ISSN 0217-751XS2CID 118414603.
  44. ^ Jacob, M.; Landshoff, P.V. (1978). "Large transverse momentum and jet studies"Physics Reports48 (4): 285–350. Bibcode:1978PhR....48..285Jdoi:10.1016/0370-1573(78)90177-1.
  45. ^ Jacob, M (1979). "Jets in high energy collisions". Physica Scripta19 (2): 69–78. Bibcode:1979PhyS...19...69Jdoi:10.1088/0031-8949/19/2/001ISSN 0031-8949.
  46. ^ Horgan, R.; Jacob, M. (1981). "Jet production at collider energy"Nuclear Physics B179 (3): 441–460. Bibcode:1981NuPhB.179..441Hdoi:10.1016/0550-3213(81)90013-4.
  47. ^ Jacob, M.; Landshoff, P.V. (1986). "Minijets: origin and usefulness"Modern Physics Letters A01 (12): 657–663. Bibcode:1986MPLA....1..657Jdoi:10.1142/S021773238600083XISSN 0217-7323.
  48. ^ Banner, M.; Bloch, Ph.; Bonaudi, F.; Borer, K.; Borghini, M.; Chollet, J.-C.; Clark, A.G.; Conta, C.; Darriulat, P.; Di Lella, L.; Dines-Hansen, J. (1982). "Observation of very large transverse momentum jets at the CERN p collider"Physics Letters B118 (1–3): 203–210. Bibcode:1982PhLB..118..203Bdoi:10.1016/0370-2693(82)90629-3.
  49. ^ Arnison, G.; Astbury, A.; Aubert, B.; Bacci, C.; Bernabei, R.; Bézaguet, A.; Böck, R.; Bowcock, T.J.V.; Calvetti, M.; Carroll, T.; Catz, P. (1983). "Observation of jets in high transverse energy events at the CERN proton antiproton collider"Physics Letters B123 (1–2): 115–122. Bibcode:1983PhLB..123..115Adoi:10.1016/0370-2693(83)90970-X.
  50. ^ Adcox, K.; Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Al-Jamel, A.; Alexander, J.; Amirikas, R.; Aoki, K.; Aphecetche, L. (2005). "Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration". Nuclear Physics A757 (1–2): 184–283. arXiv:nucl-ex/0410003Bibcode:2005NuPhA.757..184Adoi:10.1016/j.nuclphysa.2005.03.086S2CID 119511423.
  51. ^ Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Bai, Y.; Balewski, J.; Barannikova, O. (2005). "Experimental and theoretical challenges in the search for the quark–gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions". Nuclear Physics A757 (1–2): 102–183. arXiv:nucl-ex/0501009Bibcode:2005NuPhA.757..102Adoi:10.1016/j.nuclphysa.2005.03.085S2CID 119062864.
  52. ^ Back, B.B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Becker, B.; Betts, R.R.; Bickley, A.A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A. (2005). "The PHOBOS perspective on discoveries at RHIC". Nuclear Physics A757 (1–2): 28–101. arXiv:nucl-ex/0410022Bibcode:2005NuPhA.757...28Bdoi:10.1016/j.nuclphysa.2005.03.084.
  53. ^ Schukraft, Jürgen (2010). ALICE—'Little Bang' : The first 3 weeks ... (PDF).
  54. ^ "LHC experiments bring new insight into primordial universe" (Press release). CERN. November 26, 2010. Retrieved December 2, 2010.
  55. ^ Aad, G.; et al. (ATLAS Collaboration) (13 December 2010). "Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at sNN = 2.76 TeV with the ATLAS Detector at the LHC"Physical Review Letters105 (25): 252303. arXiv:1011.6182Bibcode:2010PhRvL.105y2303Adoi:10.1103/physrevlett.105.252303PMID 21231581.
  56. ^ Chatrchyan, S.; et al. (CMS Collaboration) (12 August 2011). "Observation and studies of jet quenching in Pb-Pb collisions at sNN = 2.76 TeV"Physical Review C84 (2): 024906. arXiv:1102.1957Bibcode:2011PhRvC..84b4906Cdoi:10.1103/physrevc.84.024906.
  57. ^ CERN (18 July 2012). "Heavy ions and quark–gluon plasma".
  58. ^ Albrecht, R.; Antonenko, V.; Awes, T. C.; Barlag, C.; Berger, F.; Bloomer, M.; Blume, C.; Bock, D.; Bock, R.; Bohne, E.-M.; Bucher, D. (1996). "Limits on the Production of Direct Photons in 200 A GeV S 32 + A u Collisions"Physical Review Letters76 (19): 3506–3509. Bibcode:1996PhRvL..76.3506Adoi:10.1103/PhysRevLett.76.3506ISSN 0031-9007PMID 10060985.
  59. ^ Aggarwal, M. M.; Agnihotri, A.; Ahammed, Z.; Angelis, A. L. S.; Antonenko, V.; Arefiev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T. C.; Baba, P. V. K. S.; Badyal, S. K. (2000). "Observation of Direct Photons in Central 158 A GeV P 208 b + P 208 b Collisions". Physical Review Letters85 (17): 3595–3599. arXiv:nucl-ex/0006008doi:10.1103/PhysRevLett.85.3595ISSN 0031-9007PMID 11030959S2CID 119386387.
  60. ^ Acharya, S.; Acosta, F. T.-.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S. (2019). "Direct photon production at low transverse momentum in proton-proton collisions at s = 2.76 and 8 TeV"Physical Review C99 (2): 024912. doi:10.1103/PhysRevC.99.024912ISSN 2469-9985.
  61. ^ Venugopalan, Raju (2008). "From Glasma to Quark Gluon Plasma in heavy ion collisions". Journal of Physics G: Nuclear and Particle Physics35 (10): 104003. arXiv:0806.1356Bibcode:2008JPhG...35j4003Vdoi:10.1088/0954-3899/35/10/104003S2CID 15121756.
  62. ^ WA Zajc (2008). "The fluid nature of quark–gluon plasma". Nuclear Physics A805 (1–4): 283c–294c. arXiv:0802.3552Bibcode:2008NuPhA.805..283Zdoi:10.1016/j.nuclphysa.2008.02.285S2CID 119273920.
  63. ^ Plümer, M.; Raha, S. & Weiner, R. M. (1984). "How free is the quark–gluon plasma". Nucl. Phys. A418: 549–557. Bibcode:1984NuPhA.418..549Pdoi:10.1016/0375-9474(84)90575-X.
  64. ^ Plümer, M.; Raha, S. & Weiner, R. M. (1984). "Effect of confinement on the sound velocity in a quark–gluon plasma". Phys. Lett. B139 (3): 198–202. Bibcode:1984PhLB..139..198Pdoi:10.1016/0370-2693(84)91244-9.
  65. ^ Wang, Xin-Nian (2016). Quark–Gluon Plasma 5. World Scientific. Bibcode:2016qgpf.book.....Wdoi:10.1142/9533ISBN 978-981-4663-70-0.
  66. ^ Harris, John W.; Müller, Berndt (1996). "The search for the quark–gluon plasma"Annual Review of Nuclear and Particle Science46 (1): 71–107. arXiv:hep-ph/9602235Bibcode:1996ARNPS..46...71Hdoi:10.1146/annurev.nucl.46.1.71ISSN 0163-8998S2CID 2213461.
  67. ^ Bohr, Henrik; Nielsen, H. B. (1977). "Hadron production from a boiling quark soup: quark model predicting particle ratios in hadronic collisions". Nuclear Physics B128 (2): 275. Bibcode:1977NuPhB.128..275Bdoi:10.1016/0550-3213(77)90032-3.
  68. ^ Abatzis, S.; Antinori, F.; Barnes, R.P.; Benayoun, M.; Beusch, W.; Bloodworth, I.J.; Bravar, A.; Carney, J.N.; Di Bari, D.; Dufey, J.P.; Evans, D. (1991). "Production of multistrange baryons and antibaryons in sulphur-tungsten interactions at 200 GeV/c per nucleon"Physics Letters B259 (4): 508–510. Bibcode:1991PhLB..259..508Adoi:10.1016/0370-2693(91)91666-J.
  69. ^ Abatzis, S.; Antinori, F.; Barnes, R.P.; Benayoun, M.; Beusch, W.; Bloodworth, I.J.; Bravar, A.; Carney, J.N.; de la Cruz, B.; Di Bari, D.; Dufey, J.P. (1991). "production in sulphur-tungsten interactions at 200 GeV/c per nucleon"Physics Letters B270 (1): 123–127. doi:10.1016/0370-2693(91)91548-A.
  70. ^ Andersen, E.; Antinori, F.; Armenise, N.; Bakke, H.; Bán, J.; Barberis, D.; Beker, H.; Beusch, W.; Bloodworth, I.J.; Böhm, J.; Caliandro, R. (1999). "Strangeness enhancement at mid-rapidity in Pb–Pb collisions at 158 A GeV/c"Physics Letters B449 (3–4): 401–406. Bibcode:1999PhLB..449..401Wdoi:10.1016/S0370-2693(99)00140-9.
  71. ^ Müller, Berndt (2016), "A New Phase of Matter: Quark–Gluon Plasma Beyond the Hagedorn Critical Temperature", in Rafelski, Johann (ed.), Melting Hadrons, Boiling Quarks - from Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN, Springer International Publishing, pp. 107–116, doi:10.1007/978-3-319-17545-4_14ISBN 978-3-319-17544-7S2CID 119120988
  72. ^ "Duke theorists play role in search for superhot 'quark–gluon plasma'"EurekAlert!. Retrieved 2020-03-17.
  73. ^ Jacak, Barbara; Steinberg, Peter (2010). "Creating the perfect liquid in heavy-ion collisions". Physics Today63 (5): 39–43. Bibcode:2010PhT....63e..39Jdoi:10.1063/1.3431330ISSN 0031-9228.
  74. ^ "Quark–gluon plasma goes liquid". physicsworld.com. Retrieved 2016-03-04.
  75. ^ "BNL Newsroom | RHIC Scientists Serve Up 'Perfect' Liquid"www.bnl.gov. Retrieved 2017-04-21.
  76. ^ Eleanor Imster. "LHC creates liquid from Big Bang | Human World". EarthSky. Retrieved 2016-03-04.
  77. ^ "New State of Matter created at CERN"CERN. 10 February 2000. Retrieved 2020-03-25.
  78. ^ "30 Years of Heavy ions : ...what next?"Indico. CERN. 9 November 2016. Retrieved 2020-04-07.
  79. ^ Overbye, Dennis (2010-02-15). "In Brookhaven Collider, Briefly Breaking a Law of Nature"The New York TimesISSN 0362-4331. Retrieved 2017-04-21.
  80. ^ "RHIC | Relativistic Heavy Ion Collider". Bnl.gov. Retrieved 2016-03-04.
  81. Jump up to: a b http://www.bnl.gov/rhic/news2/news.asp?a=1074&t=pr'Perfect' Liquid Hot Enough to be Quark Soup
  82. ^ "Alice Experiment: The ALICE Portal". Archived from the original on February 13, 2006. Retrieved July 12, 2005.
  83. ^ "The LHC enters a new phase". Retrieved November 23,2016.
  84. ^ "Hot stuff: CERN physicists create record-breaking subatomic soup : News blog". Blogs.nature.com. 2012-08-13. Retrieved 2016-03-04.
  85. ^ Hwa, Rudolph C; Wang, Xin-Nian (2010). Quark–Gluon Plasma 4. World Scientific. Bibcode:2010qgp4.book.....Hdoi:10.1142/7588ISBN 978-981-4293-28-0.
  86. ^ Mangano, Michelangelo (2020). "LHC at 10: the physics legacy"CERN Courier60 (2): 40–46. arXiv:2003.05976Bibcode:2020arXiv200305976M.
  87. ^ Shuryak, Edward (2017). "Strongly coupled quark–gluon plasma in heavy ion collisions"Reviews of Modern Physics89 (3): 035001. Bibcode:2017RvMP...89c5001Sdoi:10.1103/RevModPhys.89.035001ISSN 0034-6861.
  88. ^ Pasechnik, Roman; Šumbera, Michal (2017). "Phenomenological review on quark–gluon plasma: concepts vs. observations"Universe3 (1): 7. arXiv:1611.01533Bibcode:2017Univ....3....7Pdoi:10.3390/universe3010007ISSN 2218-1997S2CID 17657668.
  89. ^ Bjorken, J. D. (1983). "Highly relativistic nucleus-nucleus collisions: The central rapidity region". Physical Review D27(1): 140–151. Bibcode:1983PhRvD..27..140Bdoi:10.1103/PhysRevD.27.140ISSN 0556-2821.
  90. Jump up to: a b Letessier, Jean; Rafelski, Johann (2002-05-30). Hadrons and Quark–Gluon Plasma. Cambridge University Press. ISBN 978-1-139-43303-7.
  91. ^ Rafelski, Johann, ed. (2016). Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN. Cham: Springer International Publishing. Bibcode:2016mhbq.book.....Rdoi:10.1007/978-3-319-17545-4ISBN 978-3-319-17544-7.
  92. ^ E, Fortov Vladimr (2016). Thermodynamics And Equations Of State For Matter: From Ideal Gas To Quark–gluon Plasma. World Scientific. ISBN 978-981-4749-21-3.
  93. ^ Yagi, Kohsuke; Hatsuda, Tetsuo; Miake, Yasuo (2005). Quark–Gluon Plasma: From Big Bang to Little Bang. Cambridge monographs on particle physics, nuclear physics, and cosmology. Cambridge: Cambridge Univ. Press. ISBN 978-0-521-56108-2.
  94. ^ Florkowski, Wojciech (2010). Phenomenology of ultra-relativistic heavy-ion collisions. Singapore: World Scientific. ISBN 978-981-4280-66-2.
  95. ^ Banerjee, Debasish; Nayak, Jajati K.; Venugopalan, Raju (2010). Sarkar, Sourav; Satz, Helmut; Sinha, Bikash (eds.). The Physics of the Quark–Gluon Plasma: Introductory Lectures. Lect. Notes Phys. 785. Berlin, Heidelberg. pp. 105–137. arXiv:0810.3553doi:10.1007/978-3-642-02286-9ISBN 978-3-642-02285-2.
  96. ^ Stock, R., ed. (2010). Relativistic Heavy Ion Physics. Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms. 23. Berlin, Heidelberg: Springer Berlin Heidelberg. CiteSeerX 10.1.1.314.4982doi:10.1007/978-3-642-01539-7ISBN 978-3-642-01538-0.
  97. ^ Sahu, P. K.; Phatak, S. C.; Viyogi, Yogendra Pathak (2009). Quark Gluon Plasma and Hadron Physics. Narosa Publishing House. ISBN 978-81-7319-957-8.
  98. ^ The Physics of the Quark–Gluon Plasma. Lecture Notes in Physics. 225. Berlin, Heidelberg: Springer Berlin Heidelberg. 1985. doi:10.1007/bfb0114317ISBN 978-3-540-15211-8.
  99. ^ Gazdzicki, Marek; Gorenstein, Mark; Seyboth, Peter (2020). "Brief history of the search for critical structures in heavy-ion collisions". Acta Physica Polonica B51 (5): 1033. arXiv:2004.02255Bibcode:2020AcPPB..51.1033Gdoi:10.5506/APhysPolB.51.1033S2CID 214802159.
  100. ^ Rafelski, Johann (2020). "Discovery of Quark–Gluon Plasma: Strangeness Diaries". The European Physical Journal Special Topics229 (1): 1–140. arXiv:1911.00831Bibcode:2020EPJST.229....1Rdoi:10.1140/epjst/e2019-900263-xISSN 1951-6401S2CID 207869782.
  101. ^ Pasechnik, Roman; Šumbera, Michal (2017). "Phenomenological Review on Quark–Gluon Plasma: Concepts vs. Observations"Universe3 (1): 7. arXiv:1611.01533Bibcode:2017Univ....3....7Pdoi:10.3390/universe3010007ISSN 2218-1997S2CID 17657668.
  102. ^ Satz, Helmut; Stock, Reinhard (2016). "Quark Matter: The Beginning". Nuclear Physics A956: 898–901. Bibcode:2016NuPhA.956..898Sdoi:10.1016/j.nuclphysa.2016.06.002.
  103. ^ Gazdzicki, M. (2012). "On the history of multi-particle production in high energy collisions"Acta Physica Polonica B43 (4): 791. arXiv:1201.0485Bibcode:2012arXiv1201.0485Gdoi:10.5506/APhysPolB.43.791ISSN 0587-4254S2CID 118418649.
  104. ^ Müller, B. (2012). "Strangeness and the quark–gluon plasma: thirty years of discovery"Acta Physica Polonica B43 (4): 761. arXiv:1112.5382doi:10.5506/APhysPolB.43.761ISSN 0587-4254S2CID 119280137.
  105. ^ Heinz, Ulrich (2008). "From SPS to RHIC: Maurice and the CERN heavy-ion programme"Physica Scripta78 (2): 028005. arXiv:0805.4572Bibcode:2008PhyS...78b8005Hdoi:10.1088/0031-8949/78/02/028005ISSN 0031-8949S2CID 13833990.
  106. ^ Baym, G. (2002). "RHIC: From dreams to beams in two decades". Nuclear Physics A698 (1–4): xxiii–xxxii. arXiv:hep-ph/0104138Bibcode:2002NuPhA.698D..23Bdoi:10.1016/S0375-9474(01)01342-2S2CID 12028950.

 https://en.wikipedia.org/wiki/Quark–gluon_plasma


No comments:

Post a Comment