Blog Archive

Saturday, May 13, 2023

05-12-2023-2036 - Zero field splitting (ZFS)

Zero field splitting (ZFS) describes various interactions of the energy levels of a molecule or ion resulting from the presence of more than one unpaired electron. In quantum mechanics, an energy level is called degenerate if it corresponds to two or more different measurable states of a quantum system. In the presence of a magnetic field, the Zeeman effect is well known to split degenerate states. In quantum mechanics terminology, the degeneracy is said to be "lifted" by the presence of the magnetic field. In the presence of more than one unpaired electron, the electrons mutually interact to give rise to two or more energy states. Zero field splitting refers to this lifting of degeneracy even in the absence of a magnetic field. ZFS is responsible for many effects related to the magnetic properties of materials, as manifested in their electron spin resonance spectra and magnetism.[1]

The classic case for ZFS is the spin triplet, i.e., the S=1 spin system. In the presence of a magnetic field, the levels with different values of magnetic spin quantum number (MS=0,±1) are separated and the Zeeman splitting dictates their separation. In the absence of magnetic field, the 3 levels of the triplet are isoenergetic to the first order. However, when the effects of inter-electron repulsions are considered, the energy of the three sublevels of the triplet can be seen to have separated. This effect is thus an example of ZFS. The degree of separation depends on the symmetry of the system. 

https://en.wikipedia.org/wiki/Zero_field_splitting

No comments:

Post a Comment