Effects of precession[edit]
The Earth's axis rotates slowly westward about the poles of the ecliptic, completing one circuit in about 26,000 years. This effect, known as precession, causes the coordinates of stationary celestial objects to change continuously, if rather slowly. Therefore, equatorial coordinates(including declination) are inherently relative to the year of their observation, and astronomers specify them with reference to a particular year, known as an epoch. Coordinates from different epochs must be mathematically rotated to match each other, or to match a standard epoch.[4]
The currently used standard epoch is J2000.0, which is January 1, 2000 at 12:00 TT. The prefix "J" indicates that it is a Julian epoch. Prior to J2000.0, astronomers used the successive Besselian Epochs B1875.0, B1900.0, and B1950.0.[5]
https://en.wikipedia.org/wiki/Declination
Julian dates and J2000
[edit]
A Julian year is an interval with the length of a mean year in the Julian calendar, i.e. 365.25 days. This interval measure does not itself define any epoch: the Gregorian calendar is in general use for dating. But, standard conventional epochs which are not Besselian epochs have been often designated nowadays with a prefix "J", and the calendar date to which they refer is widely known, although not always the same date in the year: thus "J2000" refers to the instant of 12 noon (midday) on January 1, 2000, and J1900 refers to the instant of 12 noon on January 0, 1900, equal to December 31, 1899.[6] It is also usual now to specify on what time scale the time of day is expressed in that epoch-designation, e.g. often Terrestrial Time.
In addition, an epoch optionally prefixed by "J" and designated as a year with decimals (2000 + x), where x is either positive or negative and is quoted to 1 or 2 decimal places, has come to mean a date that is an interval of x Julian years of 365.25 days away from the epoch J2000 = JD 2451545.0 (TT), still corresponding (in spite of the use of the prefix "J" or word "Julian") to the Gregorian calendar date of January 1, 2000, at 12h TT (about 64 seconds before noon UTC on the same calendar day).[7] (See also Julian year (astronomy).) Like the Besselian epoch, an arbitrary Julian epoch is therefore related to the Julian date by
- J = 2000 + (Julian date − 2451545.0) ÷ 365.25
The IAU decided at their General Assembly of 1976[8] that the new standard equinox of J2000.0 should be used starting in 1984. Before that, the equinox of B1950.0 seems to have been the standard.[citation needed]
Different astronomers or groups of astronomers used to define individually, but today standard epochs are generally defined by international agreement through the IAU, so astronomers worldwide can collaborate more effectively. It is inefficient and error-prone if data or observations of one group have to be translated in non-standard ways so that other groups could compare the data with information from other sources. An example of how this works: if a star's position is measured by someone today, they then use a standard transformation to obtain the position expressed in terms of the standard reference frame of J2000, and it is often then this J2000 position which is shared with others.
On the other hand, there has also been an astronomical tradition of retaining observations in just the form in which they were made, so that others can later correct the reductions to standard if that proves desirable, as has sometimes occurred.
The currently-used standard epoch "J2000" is defined by international agreement to be equivalent to:
- The Gregorian date January 1, 2000, at 12:00 TT (Terrestrial Time).
- The Julian date 2451545.0 TT (Terrestrial Time).[9]
- January 1, 2000, 11:59:27.816 TAI (International Atomic Time).[10]
- January 1, 2000, 11:58:55.816 UTC (Coordinated Universal Time).[b]
No comments:
Post a Comment