In enzymology, a sulfate adenylyltransferase (EC 2.7.7.4) is an enzyme that catalyzes the chemical reaction
- ATP + sulfate pyrophosphate + adenylyl sulfate
Thus, the two substrates of this enzyme are ATP and sulfate, whereas its two products are pyrophosphateand adenylyl sulfate.
This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing nucleotide groups (nucleotidyltransferases). The systematic name of this enzyme class is ATP:sulfate adenylyltransferase. Other names in common use include adenosine-5'-triphosphate sulfurylase, adenosinetriphosphate sulfurylase, adenylylsulfate pyrophosphorylase, ATP sulfurylase, ATP-sulfurylase, and sulfurylase. This enzyme participates in 3 metabolic pathways: purine metabolism, selenoamino acid metabolism, and sulfur metabolism.
Some sulfate adenylyltransferases are part of a bifunctional polypeptide chain associated with adenosyl phosphosulfate (APS) kinase. Both enzymes are required for PAPS (phosphoadenosine-phosphosulfate) synthesis from inorganic sulfate.[1][2]
ATP sulfurylase is one of the enzymes used in pyrosequencing.
References[edit]
- ^ Rosenthal E, Leustek T (November 1995). "A multifunctional Urechis caupo protein, PAPS synthetase, has both ATP sulfurylase and APS kinase activities". Gene. 165 (2): 243–8. doi:10.1016/0378-1119(95)00450-K. PMID 8522184.
- ^ Kurima K, Warman ML, Krishnan S, Domowicz M, Krueger RC, Deyrup A, Schwartz NB (July 1998). "A member of a family of sulfate-activating enzymes causes murine brachymorphism". Proc. Natl. Acad. Sci. U.S.A. 95 (15): 8681–5. Bibcode:1998PNAS...95.8681K. doi:10.1073/pnas.95.15.8681. PMC 21136. PMID 9671738.
Further reading[edit]
- Bandurski RS, Wilson LG, Squires CL (1956). "The mechanism of "active sulfate" formation". J. Am. Chem. Soc. 78 (24): 6408–6409. doi:10.1021/ja01605a028.
- Hilz H; Lipmann F (1955). "The enzymatic activation of sulfate". Proc. Natl. Acad. Sci. USA. 41 (11): 880–890. Bibcode:1955PNAS...41..880H. doi:10.1073/pnas.41.11.880. PMC 534298. PMID 16589765.
- Venkatachalam KV, Akita H, Strott CA (1998). "Molecular cloning, expression, and characterization of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase and its functional domains". J. Biol. Chem. 273 (30): 19311–20. doi:10.1074/jbc.273.30.19311. PMID 9668121.
No comments:
Post a Comment