Blog Archive

Tuesday, August 24, 2021

08-24-2021-0030 - 3′-Phosphoadenosine-5′-phosphosulfate PAPS

3′-Phosphoadenosine-5′-phosphosulfate (PAPS) is a derivative of adenosine monophosphate that is phosphorylated at the 3′ position and has a sulfate group attached to the 5′ phosphate. It is the most common coenzyme in sulfotransferase reactions. It is endogenously synthesized by organisms via the phosphorylation of adenosine 5′-phosphosulfate (APS), an intermediary metabolite.[1] In humans such reaction is performed by bifunctional 3′-phosphoadenosine 5′-phosphosulfate synthases (PAPSS1 and PAPSS2) using ATP as the phosphate donor.[2][3] 

Formation and reduction[edit]

APS and PAPS are intermediates in the reduction of sulfate to sulfite, an exothermic conversion that is carried out by sulfate-reducing bacteria. In these organisms, sulfate serves as an electron acceptor, akin to the use of O2 as an electron acceptor by aerobic organisms. Sulfate is not reduced directly but must be activated by the formation of APS or PAPS. These carriers of activated sulfate are produced by reaction with ATP. The first reaction is catalysed by ATP sulfurylase:

SO42− + ATP → APS + PPi

The conversion of APS to PAPS is catalysed by APS kinase:

APS + ATP → PAPS + ADP
Structure of adenosine 5′-phosphosulfate (APS).

Reduction of APS leads to sulfite, which is further reduced to hydrogen sulfide, which is excreted. This process is called dissimilatory sulfate reduction. Reduction of PAPS, a more elaborated sulfate ester, leads also to hydrogen sulfide. But in this case, the product is used in biosynthesis, e.g. for the production of cysteine. The latter process is called assimilatory sulfate reduction because the sulfate sulfur is assimilated.[4]

https://en.wikipedia.org/wiki/3%27-Phosphoadenosine-5%27-phosphosulfate





Above. Fiona Apple - Paper Bag



Above. Ana Voog - Mother Anorexia



Above. Stage - Live Happy, Live With Anorexia



No comments:

Post a Comment