The cosmic microwave background (CMB, CMBR), in Big Bang cosmology, is electromagnetic radiationwhich is a remnant from an early stage of the universe, also known as "relic radiation".[1] The CMB is faint cosmic background radiation filling all space. It is an important source of data on the early universe because it is the oldest electromagnetic radiation in the universe, dating to the epoch of recombination. With a traditional optical telescope, the space between stars and galaxies (the background) is completely dark. However, a sufficiently sensitive radio telescope shows a faint background noise, or glow, almost isotropic, that is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson[2][3] was the culmination of work initiated in the 1940s, and earned the discoverers the 1978 Nobel Prize in Physics.
CMB is landmark evidence of the Big Bang origin of the universe. When the universe was young, before the formation of stars and planets, it was denser, much hotter, and filled with an opaque fog of hydrogen plasma. As the universe expanded the plasma grew cooler and the radiation filling it expanded to longer wavelengths. When the temperature had dropped enough, protons and electrons combined to form neutral hydrogen atoms. Unlike the plasma, these newly conceived atoms could not scatter the thermal radiation by Thomson scattering, and so the universe became transparent.[4] Cosmologists refer to the time period when neutral atoms first formed as the recombination epoch, and the event shortly afterwards when photons started to travel freely through space is referred to as photon decoupling. The photons that existed at the time of photon decoupling have been propagating ever since, though growing less energetic, since the expansion of spacecauses their wavelength to increase over time (and wavelength is inversely proportional to energy according to Planck's relation). This is the source of the alternative term relic radiation. The surface of last scattering refers to the set of points in space at the right distance from us so that we are now receiving photons originally emitted from those points at the time of photon decoupling.
https://en.wikipedia.org/wiki/Cosmic_microwave_background
No comments:
Post a Comment