Blog Archive

Monday, September 27, 2021

09-26-2021-2110 - Kronecker delta

Caption This! The DJ Darth Vader Edition – Synthtopia

In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:

or with use of Iverson brackets:

where the Kronecker delta Î´ij is a piecewise function of variables i and j. For example, Î´1 2 = 0, whereas Î´3 3 = 1.

The Kronecker delta appears naturally in many areas of mathematics, physics and engineering, as a means of compactly expressing its definition above.

In  linear algebra, the n × n identity matrix I has entries equal to the Kronecker delta:

where i and j take the values 1, 2, ..., n, and the inner product of vectors can be written as 

Here the Euclidean vectors are defined as n-tuples:  and  and the last step is obtained by using the values of the Kronecker delta to reduce the summation over j.

The restriction to positive or non-negative integers is common, but in fact, the Kronecker delta can be defined on an arbitrary set.

https://en.wikipedia.org/wiki/Kronecker_delta

No comments:

Post a Comment