Blog Archive

Monday, September 27, 2021

09-26-2021-2252 - Particle Radiation Range, Energy Density Tables, Gravimetry

In passing through matter, charged particles ionize and thus lose energy in many steps, until their energy is (almost) zero. The distance to this point is called the range of the particle. The range depends on the type of particle, on its initial energy and on the material through which it passes.

For example, if the ionising particle passing through the material is a positive ion like an alpha particle or proton, it will collide with atomic electrons in the material via Coulombic interaction. Since the mass of the proton or alpha particle is much greater than that of the electron, there will be no significant deviation from the radiation's incident path and very little kinetic energy will be lost in each collision. As such, it will take many successive collisions for such heavy ionising radiation to come to a halt within the stopping medium or material. Maximum energy loss will take place in a head-on collision with an electron.

Since large angle scattering is rare for positive ions, a range may be well defined for that radiation, depending on its energy and charge, as well as the ionisation energy of the stopping medium. Since the nature of such interactions is statistical, the number of collisions required to bring a radiation particle to rest within the medium will vary slightly with each particle (i.e., some may travel further and undergo fewer collisions than others). Hence, there will be a small variation in the range, known as straggling.

The energy loss per unit distance (and hence, the density of ionization), or stopping power also depends on the type and energy of the particle and on the material. Usually, the energy loss per unit distance increases while the particle slows down. The curve describing this fact is called the Bragg curve. Shortly before the end, the energy loss passes through a maximum, the Bragg Peak, and then drops to zero (see the figures in Bragg Peak and in stopping power). This fact is of great practical importance for radiation therapy.

The range of alpha particles in ambient air amounts to only several centimeters; this type of radiation can therefore be stopped by a sheet of paper. Although beta particlesscatter much more than alpha particles, a range can still be defined; it frequently amounts to several hundred centimeters of air.

The mean range can be calculated by integrating the inverse stopping power over energy.

Scaling[edit]

The range of a heavy charged particle is approximately proportional to the mass of the particle and the inverse of the density of the medium, and is a function of the initial velocity of the particle.

See also[edit]


https://en.wikipedia.org/wiki/Range_(particle_radiation)

Louisville's Secret Past: Disco-Ball-Building Boomtown - WSJ

Energy density Extended Reference Table

From Wikipedia, the free encyclopedia
Jump to navigationJump to search

This is extended version of energy density table from the main page energy density:

Energy densities table
Storage typeSpecific energy (MJ/kg)Energy density (MJ/L)Peak recovery efficiency %Practical recovery efficiency %
Arbitrary Antimatter89,875,517,874depends on density
Deuterium–tritium fusion338,000,000
Uranium-235 fissile isotope144,000,0001,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor86,000,000
Reactor-grade uranium (3.5% U-235) in light-water reactor3,456,00030%
Pu-238 Î±-decay2,200,000
Hf-178m2 isomer1,326,00017,649,060
Natural uranium (0.7% U235) in light-water reactor443,00030%
Ta-180m isomer41,340689,964
Metallic hydrogen (recombination energy)216[1]
battery, Lithium–air6.12
Specific orbital energy of Low Earth orbit (approximate)33.0
Beryllium + Oxygen23.9[2]
Lithium + Fluorine23.75[citation needed]
Octaazacubane potential explosive22.9[3]
Ammonia (NH3)16.911.5[4][circular reference]
Hydrogen + Oxygen13.4[5]
Gasoline + Oxygen –> Derived from Gasoline13.3[citation needed]
Dinitroacetylene explosive - computed[citation needed]9.8
Octanitrocubane explosive8.5[6]16.9[7]
Tetranitrotetrahedrane explosive - computed[citation needed]8.3
Heptanitrocubane explosive - computed[citation needed]8.2
Sodium (reacted with chlorine)[citation needed]7.0349
Hexanitrobenzene explosive7[8]
Tetranitrocubane explosive - computed[citation needed]6.95
Ammonal (Al+NH4NO3 oxidizer)[citation needed]6.912.7
Tetranitromethane + hydrazine bipropellant - computed[citation needed]6.6
Nitroglycerin6.38[9]10.2[10]
ANFO-ANNM[citation needed]6.26
Octogen (HMX)5.7[9]10.8[11]
TNT [Kinney, G.F.; K.J. Graham (1985). Explosive shocks in airSpringer-VerlagISBN 978-3-540-15147-0.][citation needed]4.6106.92
Copper Thermite (Al + CuO as oxidizer)[citation needed]4.1320.9
Thermite (powder Al + Fe2O3 as oxidizer)4.0018.4
Hydrogen peroxide decomposition (as monopropellant)2.73.8
battery, Lithium-ion nanowire2.5495%[clarification needed][12]
battery, Lithium Thionyl Chloride (LiSOCl2)[13]2.5
Water 220.64 bar, 373.8°C[citation needed][clarification needed]1.9680.708
Kinetic energy penetrator[clarification needed]1.930
battery, Fluoride-ion[citation needed]1.72.8
battery, Hydrogen closed cycle H fuel cell[14]1.62
Hydrazine decomposition (as monopropellant)1.61.6
Ammonium nitrate decomposition (as monopropellant)1.42.5
Thermal Energy Capacity of Molten Salt1[citation needed]98%[15]
Molecular spring approximate[citation needed]1
battery, Sodium–Sulfur0.72[16]1.23[citation needed]85%[17]
battery, Lithium–Manganese[18][19]0.83-1.011.98-2.09
battery, Lithium-ion[20][21]0.46-0.720.83-3.6[22]95%[23]
battery, Lithium–Sulfur[24]1.80[25]1.26
battery, Sodium–Nickel Chloride, High Temperature0.56
battery, Silver-oxide[18]0.471.8
Flywheel0.36-0.5[26][27]
5.56 × 45 mm NATO bullet[clarification needed]0.43.2
battery, Nickel–metal hydride (NiMH), low power design as used in consumer batteries[28]0.41.55
battery, Zinc-manganese (alkaline), long life design[18][20]0.4-0.591.15-1.43
Liquid Nitrogen0.349
Water - Enthalpy of Fusion0.3340.334
battery, Zinc Bromine flow (ZnBr)[29]0.27
battery, Nickel metal hydride (NiMH), High Power design as used in cars[30]0.2500.493
battery, Nickel–Cadmium (NiCd)[20]0.141.0880%[23]
battery, Zinc–Carbon[20]0.130.331
battery, Lead–acid[20]0.140.36
battery, Vanadium redox0.09[citation needed]0.118870-75%
battery, Vanadium–Bromide redox0.180.25280%–90%[31]
Capacitor Ultracapacitor0.0199[32]0.050[citation needed]
Capacitor Supercapacitor0.01[citation needed]80%–98.5%[33]39%–70%[33]
Superconducting magnetic energy storage0.008[34]>95%
Capacitor0.002[35]
Neodymium magnet0.003[36]
Ferrite magnet0.0003[36]
Spring power (clock spring), torsion spring0.0003[37]0.0006
Storage typeEnergy density by mass (MJ/kg)Energy density by volume (MJ/L)Peak recovery efficiency %Practical recovery efficiency %

Notes[edit]

  1. ^ http://iopscience.iop.org/1742-6596/215/1/012194/pdf/1742-6596_215_1_012194.pdf
  2. ^ Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide1". Journal of the American Chemical Society75 (13): 3102–3103. doi:10.1021/ja01109a018.
  3. ^ Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?†". Inorganic Chemistry35 (24): 7124–7133. doi:10.1021/ic9606237PMID 11666896.
  4. ^ Ammonia#Combustion
  5. ^ Miller, Catherine (1 February 2021). "Introduction to Rocket Propulsion" (PDF). Retrieved 9 May 2021.
  6. ^ Wiley Interscience
  7. ^ Octanitrocubane
  8. ^ Wiley Interscience
  9. Jump up to: a b "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07.
  10. ^ Nitroglycerin
  11. ^ HMX
  12. ^ "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. Retrieved 2010-05-07.
  13. ^ "Lithium Thionyl Chloride Batteries". Nexergy. Archived from the original on 2009-02-04. Retrieved 2010-05-07.
  14. ^ "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Archived from the original on 2008-09-20. Retrieved 2010-05-07.
  15. ^ "Technology". SolarReserve. Archived from the original on 2008-01-19. Retrieved 2010-05-07.
  16. ^ "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. Retrieved 2010-05-07.
  17. ^ Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) - - Document #5960185". Proc., Intersoc. Energy Convers. Eng. Conf.; (United States). Osti.gov. 2OSTI 5960185.
  18. Jump up to: a b c "ProCell Lithium battery chemistry"Duracell. Archived from the original on 2011-07-10. Retrieved 2009-04-21.
  19. ^ "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21.
  20. Jump up to: a b c d e "Battery energy storage in various battery types". AllAboutBatteries.com. Archived from the original on 2009-04-28. Retrieved 2009-04-21.
  21. ^ A typically available lithium-ion cell with an Energy Density of 201 wh/kg "Archived copy". Archived from the original on 2008-12-01. Retrieved 2012-12-14.
  22. ^ "Lithium Batteries". Retrieved 2010-07-02.
  23. Jump up to: a b Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF). p. 7. Retrieved 2009-02-26Table 3: Input and Output Energy from Batteries
  24. ^ "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power, Inc. 2005-09-28. Archived from the original (PDF) on 2008-08-28.
  25. ^ Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry44 (5): 506–509. doi:10.1134/s1023193508050029.
  26. ^ "Storage Technology Report, ST6 Flywheel" (PDF). Archived from the original(PDF) on 2013-01-14. Retrieved 2012-12-14.
  27. ^ "Next-gen Of Flywheel Energy Storage". Product Design & Development. Archived from the original on 2010-07-10. Retrieved 2009-05-21.
  28. ^ "Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008" (PDF). Archived from the original (PDF) on 2010-01-04. Retrieved 2012-12-14.
  29. ^ "ZBB Energy Corp". Archived from the original on 2007-10-15. 75 to 85 watt-hours per kilogram
  30. ^ High Energy Metal Hydride Battery Archived 2009-09-30 at the Wayback Machine
  31. ^ "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc"(PDF). Archived from the original (PDF) on 2010-11-22. Retrieved 2010-05-07.
  32. ^ "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. Retrieved 2010-05-07.
  33. Jump up to: a b "Archived copy" (PDF). Archived from the original (PDF) on 2012-07-22. Retrieved 2012-12-14.
  34. ^ [1] Archived February 16, 2010, at the Wayback Machine
  35. ^ "Department of Computing". Archived from the original on 2006-10-06. Retrieved 2012-12-14.
  36. Jump up to: a b http://www.askmar.com/Magnets/Promising%20Magnet%20Applications.pdf
  37. ^ "Garage Door Springs". Garagedoor.org. Retrieved 2010-05-07.

https://en.wikipedia.org/wiki/Energy_density_Extended_Reference_Table

Party Time Sweatshirt | Art inspiration, Disco ball, Party time

Gravimetry is the measurement of the strength of a gravitational field. Gravimetry may be used when either the magnitude of a gravitational field or the properties of matter responsible for its creation are of interest.
Geoid undulations based on satellite gravimetry.
https://en.wikipedia.org/wiki/Gravimetry

No comments:

Post a Comment