Blog Archive

Monday, September 27, 2021

09-26-2021-2237 - energy density

Beyond the Ball: 10 Unique Disco Ball Designs

In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It may also be used for energy per unit mass, though a more accurate term for this is specific energy(or gravimetric energy density).

Often only the useful or extractable energy is measured, which is to say that inaccessible energy (such as rest mass energy) is ignored.[1] In cosmological and other general relativistic contexts, however, the energy densities considered are those that correspond to the elements of the stress–energy tensor and therefore do include mass energy as well as energy densities associated with the pressures described in the next paragraph.

Energy per unit volume has the same physical units as pressure, and in many circumstances is a synonym: for example, the energy density of a magnetic field may be expressed as (and behaves as) a physical pressure, and the energy required to compress a compressed gas a little more may be determined by multiplying the difference between the gas pressure and the external pressure by the change in volume. A pressure gradient has the potential to perform work on the surroundings by converting internal energy to work until equilibrium is reached.

Energy density
SI unitJ/m3
Other units
J/L, W⋅h/L
In SI base unitsm−1⋅kg⋅s−2
Derivations from
other quantities
U = E/V
Dimension

List of material energy densities[edit]

The following unit conversions may be helpful when considering the data in the tables: 3.6 MJ = 1 kW⋅h ≈ 1.34 hp⋅h. Since 1 J = 10−6 MJ and 1 m3 = 103 L, divide joule/m3 by 109 to get MJ/L = GJ/m3. Divide MJ/L by 3.6 to get kW⋅h/L.

In nuclear reactions[edit]

Energy released by nuclear reactions
MaterialSpecific energy
(MJ/kg)
Energy density
(MJ/L)
Specific energy
(W⋅h/kg)
Energy density
(W⋅h/L)
Comment
Antimatter89,875,517,874 ≈ 90 PJ/kgDepends on the density of the antimatter's form24,965,421,631,578 ≈ 25 TW⋅h/kgDepends on the density of the antimatter's formAnnihilation, counting both the consumed antimatter mass and ordinary matter mass
Hydrogen(fusion)639,780,320[15] but at least 2% of this is lost to neutrinos.Depends on conditions177,716,755,600Depends on conditionsReaction 4H→4He
Deuterium(fusion)
571,182,758[16]Depends on conditions158,661,876,600Depends on conditionsProposed fusion scheme for D+D→4He, by combining D+D→T+H, T+D→4He+n, n+H→D and D+D→3He+n, 3He+D→4He+H, n+H→D
Deuterium+tritium(fusion)337,387,388[15]Depends on conditions93,718,718,800Depends on conditionsD + T → 4He + n
Being developed.
Lithium-6 deuteride (fusion)268,848,415[15]Depends on conditions74,680,115,100Depends on conditions6LiD → 24He
Used in weapons.
Plutonium-23983,610,0001,300,000,000–1,700,000,000 (Depends on crystallographic phase)23,222,915,000370,000,000,000–460,000,000,000 (Depends on crystallographic phase)Heat produced in Fission reactor
Plutonium-23931,000,000490,000,000–620,000,000 (Depends on crystallographic phase)8,700,000,000140,000,000,000–170,000,000,000 (Depends on crystallographic phase)Electricity produced in Fission reactor
Uranium80,620,000[17]1,539,842,00022,394,000,000Heat produced in breeder reactor
Thorium79,420,000[17]929,214,00022,061,000,000Heat produced in breeder reactor(Experimental)
Plutonium-2382,239,00043,277,631621,900,000Radioisotope thermoelectric generator. The heat is only produced at a rate of 0.57 W/g.

In chemical reactions (oxidation)[edit]

Unless otherwise stated, the values in the following table are lower heating values for perfect combustion, not counting oxidizer mass or volume. When used to produce electricity in a fuel cell or to do work, it is the Gibbs free energy of reaction (ΔG) that sets the theoretical upper limit. If the produced H
2
O
 is vapor, this is generally greater than the lower heat of combustion, whereas if the produced H
2
O
 is liquid, it is generally less than the higher heat of combustion. But in the most relevant case of hydrogen, ΔG is 113 MJ/kg if water vapor is produced, and 118 MJ/kg if liquid water is produced, both being less than the lower heat of combustion (120 MJ/kg).[18]

Energy released by chemical reactions (oxidation)
MaterialSpecific energy
(MJ/kg)
Energy density
(MJ/L)
Specific energy
(W⋅h/kg)
Energy density
(W⋅h/L)
Comment
Hydrogen, liquid141.86 (HHV)
119.93 (LHV)
10.044 (HHV)
8.491 (LHV)
39,405.6 (HHV)
33,313.9 (LHV)
2,790.0 (HHV)
2,358.6 (LHV)
Energy figures apply after reheating to 25 °C.[19]

See note above about use in fuel cells.

Hydrogen, gas (69 MPa, 25 °C)141.86 (HHV)
119.93 (LHV)
5.323 (HHV)
4.500 (LHV)
39,405.6 (HHV)
33,313.9 (LHV)
1,478.6 (HHV)
1,250.0 (LHV)
Date from same reference as for liquid hydrogen.[19]

High-pressure tanks weigh much more than the hydrogen they can hold. The hydrogen may be around 5.7% of the total mass,[20] giving just 6.8 MJ per kg total mass for the LHV.

See note above about use in fuel cells.

Hydrogen, gas (1 atm or 101.3 kPa, 25 °C)141.86 (HHV)
119.93 (LHV)
0.01188 (HHV)
0.01005 (LHV)
39,405.6 (HHV)
33,313.9 (LHV)
3.3 (HHV)
2.8 (LHV)
[19]
Diborane78.221,722.2[21]
Beryllium67.6125.118,777.834,750.0
Lithium borohydride65.243.418,111.112,055.6
Boron58.9137.816,361.138,277.8[22]
Methane (101.3 kPa, 15 °C)55.60.037815,444.510.5
LNG (NG at −160 °C)53.6[23]22.214,888.96,166.7
CNG (NG compressed to 25 MPa ≈ 3600 psi)53.6[23]914,888.92,500.0
Natural gas53.6[23]0.036414,888.910.1
LPG propane49.625.313,777.87,027.8[24]
LPG butane49.127.713,638.97,694.5[24]
Gasoline (petrol)46.434.212,888.99,500.0[24]
Polypropylene plastic46.4[25]41.712,888.911,583.3
Polyethylene plastic46.3[25]42.612,861.111,833.3
Residential heating oil46.237.312,833.310,361.1[24]
Diesel fuel45.638.612,666.710,722.2[24]
100LL Avgas44.0[26]31.5912,222.28,775.0
Jet fuel (e.g. kerosene)43[27][28][29]35Aircraft engine
Gasohol E10 (10% ethanol 90% gasoline by volume)43.5433.1812,094.59,216.7
Lithium43.123.011,972.26,388.9
Biodiesel oil (vegetable oil)42.203311,722.29,166.7
DMF (2,5-dimethylfuran)42[30]37.811,666.710,500.0[clarification needed]
Crude oil (tonne of oil equivalent)41.86837[23]11,63010,278
Polystyrene plastic41.4[25]43.511,500.012,083.3
Body fat383510,555.69,722.2Metabolism in human body (22% efficiency[31])
Butanol36.629.210,166.78,111.1
Gasohol E85 (85% ethanol 15% gasoline by volume)33.125.65[citation needed]9,194.57,125.0
Graphite32.772.99,083.320,250.0
Coalanthracite26–3334–437,222.2–9,166.79,444.5–11,944.5Figures represent perfect combustion not counting oxidizer, but efficiency of conversion to electricity is ≈36%[7]
Silicon1.7904.55001,285Energy stored through solid to liquid phase change of silicon[32]
Aluminium31.083.88,611.123,277.8
Ethanol30248,333.36,666.7
DME31.7 (HHV)
28.4 (LHV)
21.24 (HHV)
19.03 (LHV)
8,805.6 (HHV)
7,888.9 (LHV)
5,900.0 (HHV)
5,286.1 (LHV)
[33][34]
Polyester plastic26.0[25]35.67,222.29,888.9
Magnesium24.743.06,861.111,944.5
Coalbituminous24–3526–496,666.7–9,722.27,222.2–13,611.1[7]
PET plastic (impure)23.5[35]6,527.8
Methanol19.715.65,472.24,333.3
Hydrazine (combusted to N2+H2O)19.519.35,416.75,361.1
Liquid ammonia(combusted to N2+H2O)18.611.55,166.73,194.5
PVC plastic (improper combustion toxic)18.0[25]25.25,000.07,000.0[clarification needed]
Wood18.05,000.0[36]
Peat briquette17.74,916.7[37]
Sugars, carbohydrates, and protein1726.2 (dextrose)4,722.27,277.8Metabolism in human body (22% efficiency[38])[citation needed]
Calcium15.924.64,416.76,833.3[citation needed]
Glucose15.5523.94,319.56,638.9
Dry cow dung and camel dung15.5[39]4,305.6
Coallignite10–202,777.8–5,555.6[citation needed]
Sodium13.312.83,694.53,555.6burned to wet sodium hydroxide
Peat12.83,555.6
Nitromethane11.33,138.9
Sulfur9.2319.112,563.95,308.3burned to sulfur dioxide[40]
Sodium9.18.82,527.82,444.5burned to dry sodium oxide
Battery, lithium-air rechargeable9.0[41]2,500.0Controlled electric discharge
Household waste8.0[42]2,222.2
Zinc5.338.01,472.210,555.6
Iron5.240.681,444.511,300.0burned to iron(III) oxide
Teflon plastic5.111.21,416.73,111.1combustion toxic, but flame retardant
Iron4.938.21,361.110,611.1burned to iron(II) oxide
Gunpowder4.7–11.3[43]5.9–12.9
TNT4.1846.92
ANFO3.71,027.8

Other release mechanisms[edit]

Energy released by electrochemical reactions or other means
MaterialSpecific energy
(MJ/kg)
Energy density
(MJ/L)
Specific energy
(W⋅h/kg)
Energy density
(W⋅h/L)
Comment
Battery, zinc-air1.596.02441.71,672.2Controlled electric discharge[44]
Liquid nitrogen0.77[45]0.62213.9172.2Maximum reversible work at 77.4 K with 300 K reservoir
Sodium sulfur battery0.54–0.86150–240
Compressed air at 30 MPa0.50.2138.955.6Potential energy
Latent heat of fusion of ice[citation needed] (thermal)0.333550.3335593.193.1
Lithium metal battery1.84.32Controlled electric discharge
Lithium-ion battery0.36–0.875[48]0.9–2.63100.00–243.06250.00–730.56Controlled electric discharge
Flywheel0.36–0.55.3Potential energy
Alkaline battery0.48[49]1.3[50]Controlled electric discharge
Nickel-metal hydride battery0.41[51]0.504–1.46[51]Controlled electric discharge
Lead-acid battery0.170.56Controlled electric discharge
Supercapacitor (EDLC)0.01–0.030[52][53][54][55][56][57][58]0.006–0.06[52][53][54][55][56][57]up to 8.57[58]Controlled electric discharge
Water at 100 m dam height0.0009810.0009780.2720.272Figures represent potential energy, but efficiency of conversion to electricity is 85–90%[59][60]
Electrolytic capacitor0.00001–0.0002[61]0.00001–0.001[61][62][63]Controlled electric discharge

In material deformation[edit]

The mechanical energy storage capacity, or resilience, of a Hookean material when it is deformed to the point of failure can be computed by calculating tensile strength times the maximum elongation dividing by two. The maximum elongation of a Hookean material can be computed by dividing stiffness of that material by its ultimate tensile strength. The following table lists these values computed using the Young's modulus as measure of stiffness:

Mechanical energy capacities
MaterialEnergy density by mass

(J/kg)

Resilience: Energy density by volume

(J/L)

Density

(kg/L)

Young's modulus

(GPa)

Tensile yield strength

(MPa)

Rubber band1,651–6,605[64]2,200–8,900[64]1.35[64]
Steel, ASTM A228 (yield, 1 mm diameter)1,440–1,77011,200–13,8007.80[65]210[65]2,170–2,410[65]
Acetals9087540.831[66]2.8[67]65 (ultimate)[67]
Nylon-6233–1,870253–2,0301.0842–4[67]45–90 (ultimate)[67]
Copper Beryllium 25-1/2 HT (yield)6845,720[68]8.36[69]131[68]1,224[68]
Polycarbonates433–615520–7401.2[70]2.6[67]52–62 (ultimate)[67]
ABS plastics241–534258–5711.071.4–3.1[67]40 (ultimate)[67]
Acrylic1,5303.2[67]70 (ultimate)[67]
Aluminium 7077-T8 (yield)3991120[68]2.81[71]71.0[68]400[68]
Steel, stainless, 301-H (yield)3012,410[68]8.0[72]193[68]965[68]
Aluminium 6061-T6 (yield @ 24 °C)2055532.70[73]68.9[73]276[73]
Epoxy resins113–18102–3[67]26–85 (ultimate)[67]
Douglas fir Wood158–20096.481–.609[74]13[67]50 (compression)[67]
Steel, Mild AISI 101842.43347.87[75]205[75]370 (440 Ultimate)[75]
Aluminium (not alloyed)32.587.72.70[76]69[67]110 (ultimate)[67]
Pine (American Eastern White, flexural)31.8–32.811.1–11.5.350[77]8.30–8.56 (flexural)[77]41.4 (flexural)[77]
Brass28.6–36.5250–3068.4–8.73[78]102–125[67]250 (ultimate)[67]
Copper23.12078.93[78]117[67]220 (ultimate)[67]
Glass5.56–10.013.9–25.02.5[79]50–90[67]50 (compression)[67]

In batteries[edit]

Battery energy capacities
Storage deviceEnergy content
(Joule)
Energy content
(W⋅h)
Energy typeTypical
mass (g)
Typical dimensions
(diameter × height in mm)
Typical volume (mL)Energy density
by volume (MJ/L)
Energy density
by mass (MJ/kg)
Alkaline AA battery[80]9,3602.6Electrochemical2414.2 × 507.921.180.39
Alkaline C battery[80]34,4169.5Electrochemical6526 × 4624.421.410.53
NiMH AA battery9,0722.5Electrochemical2614.2 × 507.921.150.35
NiMH C battery19,4405.4Electrochemical8226 × 4624.420.800.24
Lithium-ion 18650 battery28,800–46,80010.5–13Electrochemical44–49[81]18 × 6516.541.74–2.830.59–1.06

Nuclear energy sources[edit]

The greatest energy source by far is mass itself. This energy, E = mc2, where m = ρVρ is the mass per unit volume, V is the volume of the mass itself and c is the speed of light. This energy, however, can be released only by the processes of nuclear fission (0.1%), nuclear fusion (1%), or the annihilation of some or all of the matter in the volume V by matter-antimatter collisions (100%).[citation needed] Nuclear reactions cannot be realized by chemical reactions such as combustion. Although greater matter densities can be achieved, the density of a neutron star would approximate the most dense system capable of matter-antimatter annihilation possible. A black hole, although denser than a neutron star, does not have an equivalent anti-particle form, but would offer the same 100% conversion rate of mass to energy in the form of Hawking radiation. In the case of relatively small black holes (smaller than astronomical objects) the power output would be tremendous.

The highest density sources of energy aside from antimatter are fusion and fission. Fusion includes energy from the sun which will be available for billions of years (in the form of sunlight) but so far (2021), sustained fusion power production continues to be elusive.

Power from fission of uranium and thorium in nuclear power plants will be available for many decades or even centuries because of the plentiful supply of the elements on earth,[82] though the full potential of this source can only be realized through breeder reactors, which are, apart from the BN-600 reactor, not yet used commercially.[83] Coalgas, and petroleum are the current primary energy sources in the U.S.[84] but have a much lower energy density. Burning local biomass fuels supplies household energy needs (cooking firesoil lamps, etc.) worldwide.

Thermal power of nuclear fission reactors[edit]

The density of thermal energy contained in the core of a light water reactor (PWR or BWR) of typically 1 GWe (1 000 MW electrical corresponding to ≈3 000 MW thermal) is in the range of 10 to 100 MW of thermal energy per cubic meter of cooling water depending on the location considered in the system (the core itself (≈30 m3), the reactor pressure vessel (≈50 m3), or the whole primary circuit (≈300 m3)). This represents a considerable density of energy which requires under all circumstances a continuous water flow at high velocity in order to be able to remove the heat from the core, even after an emergency shutdown of the reactor. The incapacity to cool the cores of three boiling water reactors (BWR) at Fukushima in 2011 after the tsunami and the resulting loss of the external electrical power and of the cold source was the cause of the meltdown of the three cores in only a few hours, even though the three reactors were correctly shut down just after the Tōhoku earthquake. This extremely high power density distinguishes nuclear power plants (NPP's) from any thermal power plants (burning coal, fuel or gas) or any chemical plants and explains the large redundancy required to permanently control the neutron reactivity and to remove the residual heat from the core of NPP's.

Energy density of electric and magnetic fields[edit]

Electric and magnetic fields store energy. In a vacuum, the (volumetric) energy density is given by

where E is the electric field and B is the magnetic field. The solution will be (in SI units) in Joules per cubic metre. In the context of magnetohydrodynamics, the physics of conductive fluids, the magnetic energy density behaves like an additional pressure that adds to the gas pressure of a plasma.

In normal (linear and nondispersive) substances, the energy density (in SI units) is

where D is the electric displacement field and H is the magnetizing field.

In the case of absence of magnetic fields, by exploiting Fröhlich's relationships it is also possible to extend these equations to anisotropic and nonlineardielectrics, as well as to calculate the correlated Helmholtz free energy and entropy densities.[85]

When a pulsed laser impacts a surface, the radiant exposure, i.e. the energy deposited per unit of surface, may be called energy density or fluence.[86]

See also[edit]


https://en.wikipedia.org/wiki/Energy_density


https://en.wikipedia.org/wiki/Pressure_gradient

https://en.wikipedia.org/wiki/Internal_energy

https://en.wikipedia.org/wiki/Thermodynamic_system

https://en.wikipedia.org/wiki/Potential_energy

https://en.wikipedia.org/wiki/Mass

https://en.wikipedia.org/wiki/Thermodynamics

https://en.wikipedia.org/wiki/Exergy

https://en.wikipedia.org/wiki/Energy

https://en.wikipedia.org/wiki/Stress–energy_tensor

https://en.wikipedia.org/wiki/Relative_atomic_mass

https://en.wikipedia.org/wiki/Atomic_mass

https://en.wikipedia.org/wiki/Gravimetry

https://en.wikipedia.org/wiki/calorie

https://en.wikipedia.org/wiki/bomb_calorimeter

https://en.wikipedia.org/wiki/joule

https://en.wikipedia.org/wiki/enthalpy

https://en.wikipedia.org/wiki/entropy

https://en.wikipedia.org/wiki/stochastics

https://en.wikipedia.org/wiki/static

https://en.wikipedia.org/wiki/dynamic

https://en.wikipedia.org/wiki/state

https://en.wikipedia.org/wiki/function

https://en.wikipedia.org/wiki/scalar

https://en.wikipedia.org/wiki/vector

https://en.wikipedia.org/wiki/magnitude

https://en.wikipedia.org/wiki/direction

https://en.wikipedia.org/wiki/vector_field

https://en.wikipedia.org/wiki/space

https://en.wikipedia.org/wiki/plane

https://en.wikipedia.org/wiki/vertical_pressure_variation

https://en.wikipedia.org/wiki/linear_motor

https://en.wikipedia.org/wiki/linear_induction_motor

https://en.wikipedia.org/wiki/spinor

https://en.wikipedia.org/wiki/spiral

https://en.wikipedia.org/wiki/angular_acceleration

https://en.wikipedia.org/wiki/velocity

https://en.wikipedia.org/wiki/drag

https://en.wikipedia.org/wiki/medium

https://en.wikipedia.org/wiki/mechanics

https://en.wikipedia.org/wiki/electromagnetism

https://en.wikipedia.org/wiki/chemical

https://en.wikipedia.org/wiki/physical

https://en.wikipedia.org/wiki/nuclear

https://en.wikipedia.org/wiki/biological

https://en.wikipedia.org/wiki/maths

https://en.wikipedia.org/wiki/materials

https://en.wikipedia.org/wiki/equipment

https://en.wikipedia.org/wiki/system

https://en.wikipedia.org/wiki/surroundings

https://en.wikipedia.org/wiki/nested_system

https://en.wikipedia.org/wiki/propellant

https://en.wikipedia.org/wiki/dessicant

https://en.wikipedia.org/wiki/hydrogen

https://en.wikipedia.org/wiki/hydrogen_emission_spectra

https://en.wikipedia.org/wiki/Hydrogen_spectral_series

https://en.wikipedia.org/wiki/absorption_spectroscopy

https://en.wikipedia.org/wiki/Emission_spectrum

https://en.wikipedia.org/wiki/Spectroscopy

https://en.wikipedia.org/wiki/oscillation

https://en.wikipedia.org/wiki/particle

https://en.wikipedia.org/wiki/dust

https://en.wikipedia.org/wiki/agglomerate

https://en.wikipedia.org/wiki/order

https://en.wikipedia.org/wiki/hierarchy

https://en.wikipedia.org/wiki/pattern

https://en.wikipedia.org/wiki/step

https://en.wikipedia.org/wiki/rule

https://en.wikipedia.org/wiki/set

https://en.wikipedia.org/wiki/Astronomical_spectroscopy

https://en.wikipedia.org/wiki/Astronomy

https://en.wikipedia.org/wiki/shear

https://en.wikipedia.org/wiki/mass

https://en.wikipedia.org/wiki/efficiency


Pressure (symbol: p or P) is the force applied perpendicular to the surface of an object per unit area over which that force is distributed.: 445 [1] Gauge pressure (also spelled gage pressure)[a] is the pressure relative to the ambient pressure.

Various units are used to express pressure. Some of these derive from a unit of force divided by a unit of area; the SI unit of pressure, the pascal (Pa), for example, is one newton per square metre (N/m2); similarly, the pound-force per square inch (psi) is the traditional unit of pressure in the imperial and U.S. customarysystems. Pressure may also be expressed in terms of standard atmospheric pressure; the atmosphere (atm) is equal to this pressure, and the torr is defined as 1760 of this. Manometric units such as the centimetre of watermillimetre of mercury, and inch of mercury are used to express pressures in terms of the height of column of a particular fluid in a manometer.

Pressure
Common symbols
pP
SI unitPascal [Pa]
In SI base unitsN/m2, 1 kg/(m·s2), or 1 J/m3
Derivations from
other quantities
p = F / A
DimensionM L−1 T−2

https://en.wikipedia.org/wiki/Pressure


No comments:

Post a Comment