Blog Archive

Saturday, August 28, 2021

08-27-2021-2249 - SAR supergroup subclasses Cavalier-Smith Smith Petersen 1991 USA North America continent marine aquatic fish animals (USA already infected w/ HIV et viri - cancer)

Pages in category "SAR supergroup subclasses"

The following 23 pages are in this category, out of 23 total. This list may not reflect recent changes (learn more).

 https://en.wikipedia.org/wiki/Category:SAR_supergroup_subclasses


Miliolana is a subclass established by Saidova, 1981 that comprises porcelaneous members of the Miliolata from the CornuspiridaMiliolida with agglutinated forms removed to the Miliamminana, and Soritida. Included are both free and attached forms, some coiled with two chambers per whorl arranged in different planes, others that are irregular or have serial chambers, and still others are fusiform with complex interiors, superficially resembling the Fusulinacea. The unifying character is their imperforate porcelaneous tests.

Above. Chinese Plans; Make Porcelain. Help Make White. Send good to america for chinese in america only, berry row purice.

https://en.wikipedia.org/wiki/Miliolana

The oligotrichs are a group of ciliates, included among the spirotrichs. They have prominent oral cilia, which are arranged as a collar and lapel, in contrast to the choreotrichs where they form a complete circle. The body cilia are reduced to a girdle and ventral cilia. In Halteria and its relatives, they form bristles or cirri; however these forms may be closer relatives of the stichotrichs than of other oligotrichs. These organisms are very common in plankton communities, especially in marine systems. Usually found in concentrations of about 1 per ml, they are the most important herbivores in the sea, the first link in the food chain.

https://en.wikipedia.org/wiki/Oligotrich

The alveolates (meaning "with cavities")[2] are a group of protists, considered a major clade[3] and superphylum[4]within Eukarya, and are also called Alveolata.[5]

The most notable shared characteristic is the presence of cortical (outer-region) alveoli (sacs). These are flattened vesicles (sacs) packed into a continuous layer just under the membrane and supporting it, typically forming a flexible pellicle (thin skin). In dinoflagellates they often form armor plates. Alveolates have mitochondria with tubular cristae (ridges), and their flagellae or cilia have a distinct structure.

Almost all sequenced mitochondrial genomes of ciliates and apicomplexia are linear.[6] The mitochondrial genome of Babesia microti is circular.[7] This species is also now known not to belong to either of the genera Babesia or Theileria and a new genus will have to be created for it.

Alveolata comprises around 9 major and minor groups, which are very diverse in form, and are known to be related by various ultrastructural and genetic similarities:[8]

The Acavomonidia and Colponemidia were previously grouped together as colponemids, a taxon now split based on ultrastructural analysis. The Acavomonidia are closer to the dinoflagellate/perkinsid group than the Colponemidia are.[8] As such, the informal term "colponemids", as it stands currently, covers two non-sister groups within Alveolata: the Acavomonidia and the Colponemidia.[8]

The Apicomplexa and dinoflagellates may be more closely related to each other than to the ciliates. Both have plastids, and most share a bundle or cone of microtubules at the top of the cell. In apicomplexans this forms part of a complex used to enter host cells, while in some colorless dinoflagellates it forms a peduncle used to ingest prey. Various other genera are closely related to these two groups, mostly flagellates with a similar apical structure. These include free-living members in Oxyrrhis and Colponema, and parasites in Perkinsus,[9] ParviluciferaRastrimonas and the ellobiopsids. In 2001, direct amplification of the rRNA gene in marine picoplankton samples revealed the presence of two novel alveolate linages, called group I and II.[10][11] Group I has no cultivated relatives, while group II is related to the dinoflagellate parasite Amoebophrya, which was classified until now in the Syndinialesdinoflagellate order.

Relationships between some of these major groups were suggested during the 1980s, and a specific relationship between all three was confirmed in the early 1990s by genetic studies, most notably by Gajadhar et al.[12] Cavalier-Smith introduced the formal name Alveolata in 1991,[5] although at the time he actually considered the grouping to be a paraphyletic assemblage, rather than a monophyletic group.

Some studies suggested the haplosporids, mostly parasites of marine invertebrates, might belong here, but they lack alveoli and are now placed among the Cercozoa.

Based on a compilation of the following works.[4][13][14]

Alveolata
Ciliophora
Postciliodesmatophora

Heterotrichea

Karyorelictea

Intramacronucleata

Mesodiniea

Lamellicorticata

Litostomatea

Armophorea

Cariacotrichea

Spirotrichea

Ventrata

Protocruziea

?Discotrichida

Colpodea

Nassophorea

Phyllopharyngea

Prostomatea

Plagiopylea

Oligohymenophorea

Miozoa
Colponemidia

Colponemea

Acavomonadia

Acavomonadea

Myzozoa
Apicomplexa s.l.

?Myzomonadea

Chromerea

Colpodellida

Sporozoa

Blastogregarinida

Paragregarea

Coccidiomorphea (Coccidia and Hematozoa)

Gregarinomorphea

Dinozoa

?Squirmidea

Perkinsea

Dinoflagellata s.s.

?Pronoctilucea

Ellobiophyceae

Psammosea

Oxyrrhea

Syndinea

Dinokaryota

Noctiluciphyceae

Dinophyceae

Alveolata Cavalier-Smith 1991 [Alveolatobiontes]

  • Phylum Ciliophora Doflein 1901 stat. n. Copeland 1956 [Ciliata Perty 1852; Infusoria Bütschli 1887; Ciliae, Ciliozoa, Cytoidea, Eozoa, Heterocaryota, Heterokaryota]
  • Phylum Miozoa Cavalier-Smith 1987
    • Subphylum Colponemidia Tikhonenkov, Mylnikov & Keeling 2013
    • Subphylum Acavomonadia Tikhonenkov et al. 2014
    • Subphylum Myzozoa Cavalier-Smith 2004
      • Infraphylum Apicomplexa Levine 1970 emend. Adl et al. 2005
      • Infraphylum Dinozoa Cavalier-Smith 1981 emend. 2003
        • Order ?Acrocoelida Cavalier-Smith & Chao 2004
        • Order ?Rastromonadida Cavalier-Smith & Chao 2004
        • Class Squirmidea Norén 1999 stat. nov. Cavalier-Smith 2014
        • Superclass Perkinsozoa Norén et al. 1999 s.s.
          • Class Perkinsea Levine 1978 [Perkinsasida Levine 1978]
        • Superclass Dinoflagellata Butschli 1885 stat. nov. Cavalier-Smith 1999 sensu Cavalier-Smith 2013 [Dinozoa Cavalier-Smith 1981]
          • Class Pronoctilucea
          • Class Ellobiopsea Cavalier-Smith 1993 [Ellobiophyceae Loeblich III 1970; Ellobiopsida Whisler 1990]
          • Class Myzodinea Cavalier-Smith 2017
          • Class Oxyrrhea Cavalier-Smith 1987
          • Class Syndinea Chatton 1920 s.l. [Syndiniophyceae Loeblich III 1970 s.s.; Syndina Cavalier-Smith]
          • Class Endodinea Cavalier-Smith 2017
          • Class Noctiluciphyceae Fensome et al. 1993 [Noctilucae Haeckel 1866; Noctilucea Haeckel 1866 stat. nov.; Cystoflagellata Haeckel 1873 stat. nov. Butschli 1887]
          • Class Dinophyceae Pascher 1914 [Peridinea Ehrenberg 1830 stat. nov. Wettstein]

The development of plastids among the alveolates is intriguing. Cavalier-Smith proposed the alveolates developed from a chloroplast-containing ancestor, which also gave rise to the Chromista (the chromalveolate hypothesis). Other researchers have speculated that the alveolates originally lacked plastids and possibly the dinoflagellates and Apicomplexa acquired them separately. However, it now appears that the alveolates, the dinoflagellates, the Chromerida and the heterokont algae acquired their plastids from a red alga with evidence of a common origin of this organelle in all these four clades.[16]

A Bayesian estimate places the evolution of the alveolate group at ~850 million years ago.[17] The Alveolata consist of MyzozoaCiliates, and Colponemids. In other words, the term Myzozoa, meaning "to siphon the contents from prey", may be applied informally to the common ancestor of the subset of alveolates that are neither ciliates nor colponemids. Predation upon algae is an important driver in alveolate evolution, as it can provide sources for endosymbiosis of novel plastids. The term Myzozoa is therefore a handy concept for tracking the history of the alveolate phylum.

The ancestors of the alveolate group may have been photosynthetic.[18] The ancestral alveolate probably possessed a plastid. Chromerids, apicomplexans, and peridinin dinoflagellates have retained this organelle.[19] Going one step even further back, the chromerids, the peridinin dinoflagellates and the heterokont algae possess a monophyletic plastid lineage in common, i.e. acquired their plastids from a red alga,[16] and so it seems likely that the common ancestor of alveolates and heterokonts was also photosynthetic.

In one school of thought the common ancestor of the dinoflagellatesapicomplexansColpodellaChromerida, and Voromonas was a myzocytotic predator with two heterodynamic flagellamicroporestrichocystsrhoptriesmicronemes, a polar ring and a coiled open sided conoid.[20] While the common ancestor of alveolates may also have possessed some of these characteristics, it has been argued that Myzocytosis was not one of these characteristics, as ciliates ingest prey by a different mechanism.[8]

An ongoing debate concerns the number of membranes surrounding the plastid across apicomplexans and certain dinoflagellates, and the origin of these membranes. This ultrastructural character can be used to group organisms and if the character is in common, it can imply that phyla had a common photosynthetic ancestor. On the basis that apicomplexans possess a plastid surrounded by 4 membranes, and that peridinin dinoflagellates possess a plastid surrounded by 3 membranes, Petersen et al.[21] have been unable to rule out that the shared stramenopile-alveolate plastid could have been recycled multiple times in the alveolate phylum, the source being stramenopile-alveolate donors, through the mechanism of ingestion and endosymbiosis.

Ciliates are a model alveolate, having been genetically studied in great depth over the longest period of any alveolate lineage. They are unusual among eukaryotes in that reproduction involves a micronucleus and a macronucleus. Their reproduction is easily studied in the lab, and made them a model eukaryote historically. Being entirely predatory and lacking any remnant plastid, their development as a phylum illustrates how predation and autotrophy[18]are in dynamic balance and that the balance can swing one way or other at the point of origin of a new phylum from mixotrophic ancestors, causing one ability to be lost.

References[edit]

  1. ^ Li, C.-W.; et al. (2007). "Ciliated protozoans from the Precambrian Doushantuo Formation, Wengan, South China". Geological Society, London, Special Publications286 (1): 151–6. Bibcode:2007GSLSP.286..151Ldoi:10.1144/SP286.11S2CID 129584945.
  2. ^ "alveolate"Memidex (WordNet) Dictionary/Thesaurus. Archived from the original on 2016-04-11. Retrieved 2011-01-26.
  3. ^ Adl, S.M.; et al. (2012). "The revised classification of eukaryotes"Journal of Eukaryotic Microbiology59 (5): 429–514. doi:10.1111/j.1550-7408.2012.00644.xPMC 3483872PMID 23020233.
  4. Jump up to: a b Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM (2015). "A higher level classification of all living organisms"PLOS ONE10 (4): e0119248. Bibcode:2015PLoSO..1019248Rdoi:10.1371/journal.pone.0119248PMC 4418965PMID 25923521.
  5. Jump up to: a b Cavalier-Smith, T. (1991). "Cell diversification in heterotrophic flagellates". In Patterson, David J.; Larsen, Jacob; Systematics Association (eds.). The Biology of free-living heterotrophic flagellates. Oxford University Press. pp. 113–131. ISBN 978-0-19-857747-8.
  6. ^ Barth, D; Berendonk, TU (2011). "The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium"BMC Genomics12: 272. doi:10.1186/1471-2164-12-272PMC 3118789PMID 21627782.
  7. ^ Cornillot E, Hadj-Kaddour K, Dassouli A, Noel B, Ranwez V, Vacherie B, Augagneur Y, Brès V, Duclos A, Randazzo S, Carcy B, Debierre-Grockiego F, Delbecq S, Moubri-Ménage K, Shams-Eldin H, Usmani-Brown S, Bringaud F, Wincker P, Vivarès CP, Schwarz RT, Schetters TP, Krause PJ, Gorenflot A, Berry V, Barbe V, Ben Mamoun C (2012). "Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti"Nucleic Acids Res40 (18): 9102–14. doi:10.1093/nar/gks700PMC 3467087PMID 22833609.
  8. Jump up to: a b c d e f Tikhonenkov, DV; Janouškovec, J; Mylnikov, AP; Mikhailov, KV; Simdyanov, TG; Aleoshin, VV; Keeling, PJ (2014). "Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes"PLOS ONE9 (4): e95467. Bibcode:2014PLoSO...995467Tdoi:10.1371/journal.pone.0095467PMC 3989336PMID 24740116.
  9. ^ Zhang, H; Campbell, DA; Sturm, NR; Dungan, CF; Lin, S (2011). "Spliced leader RNAs, mitochondrial gene frameshifts and multi-protein phylogeny expand support for the genus Perkinsus as a unique group of Alveolates"PLOS ONE6 (5): e19933. Bibcode:2011PLoSO...619933Zdoi:10.1371/journal.pone.0019933PMC 3101222PMID 21629701.
  10. ^ López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (2001). "Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton". Nature409 (6820): 603–7. Bibcode:2001Natur.409..603Ldoi:10.1038/35054537PMID 11214316S2CID 11550698.
  11. ^ Moon-van der Staay SY, De Wachter R, Vaulot D (2001). "Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity". Nature409 (6820): 607–10. Bibcode:2001Natur.409..607Mdoi:10.1038/35054541PMID 11214317S2CID 4362835.
  12. ^ Gajadhar, A. A.; et al. (1991). "Ribosomal RNA sequences of Sarcocystis murisTheilera annulata, and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates". Molecular and Biochemical Parasitology45 (1): 147–153. doi:10.1016/0166-6851(91)90036-6PMID 1904987.
  13. ^ Silar, Philippe (2016), "Protistes Eucaryotes: Origine, Evolution et Biologie des Microbes Eucaryotes"HAL Archives-ouvertes: 1–462
  14. ^ Cavalier-Smith, Thomas (5 September 2017). "Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences"Protoplasma255 (1): 297–357. doi:10.1007/s00709-017-1147-3PMC 5756292PMID 28875267.
  15. ^ Strassert, Jürgen F H; Karnkowska, Anna; Hehenberger, Elisabeth; Campo, Javier del; Kolisko, Martin; Okamoto, Noriko; Burki, Fabien; Janouškovec, Jan; Poirier, Camille (2018) [published online 10 October 2017]. "Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates"The ISME Journal12 (1): 304–308. doi:10.1038/ismej.2017.167ISSN 1751-7370PMC 5739020PMID 28994824.
  16. Jump up to: a b Janouskovec, J; Horák, A; Oborník, M; Lukes, J; Keeling, PJ (2010). "A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids"Proc Natl Acad Sci USA107 (24): 10949–54. Bibcode:2010PNAS..10710949Jdoi:10.1073/pnas.1003335107PMC 2890776PMID 20534454.
  17. ^ Berney, C; Pawlowski, J (2006). "A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record"Proc Biol Sci273 (1596): 1867–72. doi:10.1098/rspb.2006.3537PMC 1634798PMID 16822745.
  18. Jump up to: a b Reyes-Prieto, A; Moustafa, A; Bhattacharya, D (2008). "Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic"Curr. Biol18 (13): 956–62. doi:10.1016/j.cub.2008.05.042PMC 2577054PMID 18595706.
  19. ^ Moore RB, Oborník M, Janouskovec J, Chrudimský T, Vancová M, Green DH, Wright SW, Davies NW, Bolch CJ, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008). "A photosynthetic alveolate closely related to apicomplexan parasites". Nature451 (7181): 959–963. Bibcode:2008Natur.451..959Mdoi:10.1038/nature06635PMID 18288187S2CID 28005870.
  20. ^ Kuvardina, ON; Leander, BS; Aleshin, VV; Myl'nikov, AP; Keeling, PJ; Simdyanov, TG (2002). "The phylogeny of colpodellids (Alveolata) using small subunit rRNA gene sequences suggests they are the free living sister group to apicomplexans"J Eukaryot Microbiol49 (6): 498–504. doi:10.1111/j.1550-7408.2002.tb00235.xPMID 12503687S2CID 4283969.
  21. ^ Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, Brinkmann H (2014). "Chromera velia, endosymbioses and the rhodoplex hypothesis—plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages)"Genome Biol Evol6 (3): 666–684. doi:10.1093/gbe/evu043PMC 3971594PMID 24572015.

External links[edit]

https://en.wikipedia.org/wiki/Alveolate

Lymphotropha is a genus of parasitic alveolates in the phylum Apicomplexa.

Lymphotropha
Scientific classification
Domain:
(unranked):
(unranked):
Phylum:
Class:
Subclass:
Order:
Family:
Genus:
Lymphotropha
Species

Lymphotropha tribolii

This genus was created by Ashford in 1965.[1]

This genus infects the flour beetle Tribolium castaneum.

The sporozoites enter the host by the oral route, usually by ingestion of contaminated food but also by cannibalism of an infected host.

Infection with this genus increases larval mortality and interferes with normal development.

  1.  Ashford RW (1965). "Lymphotropha tribolii gen. nov., sp. nov., Neogregarinida, Schizocystidae, from the haemocoele of Tribolium castaneum (Herbst)". J Protozool12 (4): 609–615. doi:10.1111/j.1550-7408.1965.tb03263.x.

https://en.wikipedia.org/wiki/Lymphotropha

Machadoella is a genus of parasitic alveolates in the phylum Apicomplexa.

Species in this genus infect species of the family Reduviidae.

This genus was created by Reichenow in 1935.[1]

The type species - Machadoella spinigeri - was first described by Machado in 1913.

The species in this genus develop in the Malphigian tubules of their host.

The trophozoites are worm like with longitudinal folds.

The schizonts are globular with multiple nuclei.

The gamonts are elongated and slightly swollen at the level of the nucleus.

Syzygy occurs at the anterior end of the gamonts.

The gametes are similar in size (isogamy).

The spores are fusiform (lemon shaped).

Machadoella
Scientific classification
Domain:
(unranked):
(unranked):
Phylum:
Class:
Order:
Family:
Genus:
Machadoella
Species

Machadoella spinigeri
Machadoella triatomae


https://en.wikipedia.org/wiki/Machadoella


Syncystis
Scientific classification
Domain:
(unranked):
(unranked):
Phylum:
Class:
Subclass:
Order:
Family:
Genus:
Syncystis
Species

Syncystis aeshnae
Syncystis mirabilis

Syncystis is a genus of parasitic alveolates in the phylum Apicomplexa.

Species in this family infect insects (Aeshnidae).














This genus was described by Schneider in 1886.

Two species are currently recognised in this family.[1]

The type species is Syncystis mirabilis Schneider 1886.

The development of these parasites is mostly intracellular.  Merogony results in the formation of about 150 elongate, slender merozoites which become spheroidal as they differentiate into amoeboid or spheroidal gamonts.

The gamonts associate in syzygy and subdivide into gametes.

Fusion of the gametes leads to numerous zygotes within the gametocyst which is either spherical or bilobed.

Numerous (30 to 150) oocysts are formed per gametocyst. The oocysts are navicular and have three or four spines extending from each pole of the wall.

Eight sporozoites form per oocyst.


https://en.wikipedia.org/wiki/Syncystis

https://www.pnas.org/content/pnas/108/33/13624.full.pdf


The Archaeplastida+HC+SAR megagroup is a group of eukaryotes proposed by Burki et al. (2008).[1] It is also referred to as Diaphoretickes (/ˌdəfəˈrɛtɪkz/) or the SAR/HA Supergroup, or the Corticata with Rhizaria.[2]

It includes:

According to this description, it includes most of the species engaging in photosynthesis, except for the Euglenozoa and Cyanobacteria. It includes all Bikonts that are not excavates and Hemimastigophora

The name "Corticata" comes from Cavalier-Smith's hypothesis about the common origin of the cortical alveoli of glaucophytes and alveolates.[3]

The megagroup was previously described as the sum of ArchaeplastidaRhizaria, and chromalveolates.[4]However, this description is obsolete, largely due to the discovery that chromalveolata is not monophyletic.

https://en.wikipedia.org/wiki/Plants%2BHC%2BSAR_megagroup


SAR or Harosa (informally the SAR supergroup) is a clade that includes stramenopiles (heterokonts), alveolates, and Rhizaria.[2][3][4][5] The name is an acronym derived from the first letters of each of these clades; it has been alternatively spelled "RAS".[6][7] The term "Harosa" (at the subkingdom level) has also been used.[8] The SAR supergroup was formulated as the node-based taxon[6].

Note that as a formal taxon, "Sar" has only its first letter capitalized, while the earlier abbreviation, SAR, retains all uppercase letters. Both names refer to the same group of organisms, unless further taxonomic revisions deem otherwise. Members of the SAR supergroup were once included under the separate supergroups Chromalveolata (Chromista and Alveolata) and Rhizaria, until phylogenetic studies confirmed that stramenopiles and alveolates diverged with Rhizaria.[9] This apparently excluded haptophytes and cryptomonads, leading Okamoto et al. (2009) to propose the clade Hacrobia to accommodate them.[10]

https://en.wikipedia.org/wiki/SAR_supergroup

The Archaeplastida (or kingdom Plantae sensu lato) are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algaeland plants, and the minor group glaucophytes.[4] It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans.[5] The Archaeplastida have chloroplaststhat are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by feeding on a cyanobacterium.[6] All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae.[note 1] Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.[8]

https://en.wikipedia.org/wiki/Archaeplastida


https://en.wikipedia.org/wiki/Filipodium

https://en.wikipedia.org/wiki/Cupriavidus_metallidurans

https://en.wikipedia.org/wiki/Polynucleobacter

https://en.wikipedia.org/wiki/Category:SAR_supergroup_subclasses

https://en.wikipedia.org/wiki/Alveolate

https://en.wikipedia.org/wiki/SAR_supergroup

https://en.wikipedia.org/wiki/Ciliate

https://en.wikipedia.org/wiki/Colpodea

https://en.wikipedia.org/wiki/Oligohymenophorea

https://en.wikipedia.org/wiki/Ichthyophthirius_multifiliis

https://en.wikipedia.org/wiki/Plagiopylida

https://en.wikipedia.org/wiki/Stentor_(ciliate)

https://en.wikipedia.org/wiki/Prostomatea

https://en.wikipedia.org/wiki/Armophorea

https://en.wikipedia.org/wiki/Haemoproteidae

https://en.wikipedia.org/wiki/Leucocytozoon

https://en.wikipedia.org/wiki/Haemosporida

https://en.wikipedia.org/wiki/Aconoidasida

https://en.wikipedia.org/wiki/Plasmodiidae

https://en.wikipedia.org/wiki/Nephromyces

https://en.wikipedia.org/wiki/Babesia

https://en.wikipedia.org/wiki/Theileria

https://en.wikipedia.org/wiki/Eimeria

https://en.wikipedia.org/wiki/Karyolysidae

https://en.wikipedia.org/wiki/Adeleorina

https://en.wikipedia.org/wiki/Adeleorina

https://en.wikipedia.org/wiki/Selenidioididae

https://en.wikipedia.org/wiki/Exoschizonidae

https://en.wikipedia.org/wiki/Cephaloidophoridae

https://en.wikipedia.org/wiki/Porosporidae

https://en.wikipedia.org/wiki/Stylocephalidae

https://en.wikipedia.org/wiki/Blabericolidae

https://en.wikipedia.org/wiki/Schizogregarinina

https://en.wikipedia.org/wiki/Lipocystis

https://en.wikipedia.org/wiki/Lipotropha

https://en.wikipedia.org/wiki/Schizocystis

https://en.wikipedia.org/wiki/Lipotrophidae

https://en.wikipedia.org/wiki/Histioneis

https://en.wikipedia.org/wiki/Gonyaulax

https://en.wikipedia.org/wiki/Ceratium

https://en.wikipedia.org/wiki/Peridiniales

https://en.wikipedia.org/wiki/Pfiesteria

https://en.wikipedia.org/wiki/Gymnodiniales

https://en.wikipedia.org/wiki/Amphidinium

https://en.wikipedia.org/wiki/Gymnodinium

https://en.wikipedia.org/wiki/Suessiales

https://en.wikipedia.org/wiki/Karenia_(dinoflagellate)

https://en.wikipedia.org/wiki/Symbiodinium

https://en.wikipedia.org/wiki/Noctilucales

https://en.wikipedia.org/wiki/Syndiniales

https://en.wikipedia.org/wiki/Amoebophyra

https://en.wikipedia.org/wiki/Syndinium

https://en.wikipedia.org/wiki/Oxyrrhis

https://en.wikipedia.org/wiki/Pronoctilucidae

https://en.wikipedia.org/wiki/Perkinsoide_chabelardi

https://en.wikipedia.org/wiki/Ellobiopsis

https://en.wikipedia.org/wiki/Thalassomyces

https://en.wikipedia.org/wiki/Phagodinida

https://en.wikipedia.org/wiki/Hematodinium



above. Queen – Bohemian Rhapsody (Official Video Remastered)


No comments:

Post a Comment