Blog Archive

Tuesday, September 28, 2021

09-27-2021-1944 - resonance, compression

Thursday Salute to Originals: Disco Ball Reflections | GPI Design 

Resonance describes the phenomenon of increased amplitude that occurs when the frequency of a  periodically applied force (or a Fourier componentof it) is equal or close to a natural frequency of the system on which it acts. When an oscillating force is applied at a resonant frequency of a dynamic system, the system will oscillate at a higher amplitude than when the same force is applied at other, non-resonant frequencies.[3]

Frequencies at which the response amplitude is a relative maximum are also known as resonant frequencies or resonance frequencies of the system.[3] Small periodic forces that are near a resonant frequency of the system have the ability to produce large amplitude oscillations in the system due to the storage of vibrational energy.

Resonance phenomena occur with all types of vibrations or waves: there is mechanical resonanceacoustic resonanceelectromagnetic resonance, nuclear magnetic resonance (NMR), electron spin resonance (ESR) and resonance of quantum wave functions. Resonant systems can be used to generate vibrations of a specific frequency (e.g., musical instruments), or pick out specific frequencies from a complex vibration containing many frequencies (e.g., filters).

The term resonance (from Latin resonantia, 'echo', from resonare, 'resound') originated from the field of acoustics, particularly the sympathetic resonance observed in musical instruments, e.g., when one string starts to vibrate and produce sound after a different one is struck.

Increase of amplitude as damping decreases and frequency approaches resonant frequency of a driven damped simple harmonic oscillator.[1][2]

https://en.wikipedia.org/wiki/Resonance

In mechanicscompression is the application of balanced inward ("pushing") forces to different points on a material or structure, that is, forces with no net sum or torque directed so as to reduce its size in one or more directions.[1] It is contrasted with tension or traction, the application of balanced outward ("pulling") forces; and with shearing forces, directed so as to displace layers of the material parallel to each other. The compressive strength of materials and structures is an important engineering consideration.

In uniaxial compression, the forces are directed along one direction only, so that they act towards decreasing the object's length along that direction.[2] The compressive forces may also be applied in multiple directions; for example inwards along the edges of a plate or all over the side surface of a cylinder, so as to reduce its area (biaxial compression), or inwards over the entire surface of a body, so as to reduce its volume.

Technically, a material is under a state of compression, at some specific point and along a specific direction , if the normal component of the stress vector across a surface with normal direction  is directed opposite to . If the stress vector itself is opposite to , the material is said to be under normal compression or pure compressive stress along . In a solid, the amount of compression generally depends on the direction , and the material may be under compression along some directions but under traction along others. If the stress vector is purely compressive and has the same magnitude for all directions, the material is said to be under isotropic or hydrostatic compression at that point. This is the only type of static compression that liquids and gasescan bear.[3]

In a mechanical wave which is longitudinal, the medium is displaced in the wave's direction, resulting in areas of compression and rarefaction.

https://en.wikipedia.org/wiki/Compression_(physics)


09-27-2021-1944 - resonance, oscillation, compression, pressure, distance, angular momentum,  rarefaction, shear, linear, stress strain, torsion, reflection, deflection, absorption, emission, etc..


No comments:

Post a Comment