Blog Archive

Tuesday, September 28, 2021

09-27-2021-2007 - neutron supermirror (repost)

Pin by Stephen Silvestri on gifs | Glitch art, Glitch, Background

neutron supermirror is a highly polished, layered material used to reflect neutron beams. Supermirrors are a special case of multi-layer neutron reflectors with varying layer thicknesses.[1]

The first neutron supermirror concept was proposed by Mezei,[2] inspired by earlier work with x-rays.

Supermirrors are produced by depositing alternating layers of strongly contrasting substances, such as nickel and titanium, on a smooth substrate. A single layer of high refractive index material (e.g. nickel) exhibits total external reflection at small grazing angles up to a critical angle . For nickel with natural isotopic abundances,  in degrees is approximately  where  is the neutron wavelength in Angstrom units.

A mirror with a larger effective critical angle can be made by exploiting diffraction (with non-zero losses) that occurs from stacked multilayers.[3] The critical angle of total reflection, in degrees, becomes approximately , where  is the "m-value" relative to natural nickel.   values in the range of 1-3 are common, in specific areas for high-divergence (e.g. using focussing optics near the source, choppers, or experimental areas) m=6 is readily available.

Nickel has a positive scattering cross section, and titanium has a negative scattering cross section, and in both elements the absorption cross section is small, which makes Ni-Ti the most efficient technology with neutrons. The number of Ni-Ti layers needed increases rapidly as , with  in the range 2-4, which affects the cost. This has a strong bearing on the economic strategy of neutron instrument design.[4]

References[edit]

  1. ^ Chupp, T. "Neutron Optics and Polarization" (PDF). Retrieved 16 April 2019.
  2. ^ Mezei, F (1976). "Novel polarized neutron devices: supermirror and spin component amplifier". Communications on Physics (London)1 (3): 81–85.
  3. ^ Hayter, J. B.; Mook, H. A. (1989). "Discrete Thin-Film Multilayer Design for X-ray and Neutron Supermirrors". J. Appl. Cryst22: 35–41. doi:10.1107/S0021889888010003.
  4. ^ Bentley, PM (2020). "Instrument suite cost optimisation in a science megaproject"Journal of Physics Communications4 (4): 045014. doi:10.1088/2399-6528/ab8a06.

https://en.wikipedia.org/wiki/Neutron_supermirror


14 Fun Ways to Decorate With Disco Balls - Rhythm of the Home


No comments:

Post a Comment