Blog Archive

Wednesday, September 29, 2021

09-28-2021-1813 - spinor spherical harmonics

70s Disco Ball Images, Stock Photos & Vectors | Shutterstock

In quantum mechanics, the spinor spherical harmonics[1] (also known as spin spherical harmonics,[2] spinor harmonics[3] and Pauli spinors[4]) are special functions defined over the sphere. The spinor spherical harmonics are the natural spinor analog of the vector spherical harmonics. While the standard spherical harmonics are a basis for the angular momentum operator, the spinor spherical harmonics are a basis for the total angular momentum operator (angular momentum plus spin). These functions are used in analytical solutions to Dirac equation in a radial potential.[3] The spinor spherical harmonics are sometimes called Pauli central field spinors, in honor to Wolfgang Pauli who employed them in the solution of the hydrogen atom with spin–orbit interaction.[1]

roperties[edit]

The spinor spherical harmonics Yl, s, j, m are the spinors eigenstates of the total angular momentum operator squared:

where j = l + s, where jl, and s are the (dimensionless) total, orbital and spin angular momentum operators, j is the total azimuthal quantum numberand m is the total magnetic quantum number.

Under a parity operation, we have

For spin-½ systems, they are given in matrix form by[1][3]

where  are the usual spherical harmonics.

Categories

 https://en.wikipedia.org/wiki/Spinor_spherical_harmonics

No comments:

Post a Comment