Blog Archive

Wednesday, September 29, 2021

09-28-2021-1901 - Reactor and regenerator Fluid catalytic cracking

Fluid catalytic cracking (FCC) is one of the most important conversion processes used in petroleum refineries. It is widely used to convert the high-boiling point, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasolineolefinic gases, and other products.[1][2][3] Cracking of petroleum hydrocarbons was originally done by thermal cracking, which has been almost completely replaced by catalytic cracking because it produces more gasoline with a higher octane rating. It also produces byproduct gases that have more carbon-carbon double bonds (i.e. more olefins), and hence more economic value, than those produced by thermal cracking.

The feedstock to FCC is usually that portion of the crude oil that has an initial boiling point of 340 °C (644 °F) or higher at atmospheric pressure and an average molecular weight ranging from about 200 to 600 or higher. This portion of crude oil is often referred to as heavy gas oil or vacuum gas oil (HVGO). In the FCC process, the feedstock is heated to a high temperature and moderate pressure, and brought into contact with a hot, powdered catalyst. The catalyst breaks the long-chain molecules of the high-boiling hydrocarbon liquids into much shorter molecules, which are collected as a vapor.

Reactor and regenerator

[edit]

The reactor and regenerator are considered to be the heart of the fluid catalytic cracking unit. The schematic flow diagram of a typical modern FCC unit in Figure 1 below is based upon the "side-by-side" configuration. The preheated high-boiling petroleum feedstock (at about 315 to 430 °C) consisting of long-chain hydrocarbon molecules is combined with recycle slurry oil from the bottom of the distillation column and injected into the catalyst riser where it is vaporised and cracked into smaller molecules of vapour by contact and mixing with the very hot powdered catalyst from the regenerator. All of the cracking reactions take place in the catalyst riser within a period of 2–4 seconds. The hydrocarbon vapours "fluidize" the powdered catalyst and the mixture of hydrocarbon vapors and catalyst flows upward to enter the reactor at a temperature of about 535 °C and a pressure of about 1.72 bar.

The reactor is a vessel in which the cracked product vapors are: (a) separated from the spent catalyst by flowing through a set of two-stage cycloneswithin the reactor and (b) the spent catalyst flows downward through a steam stripping section to remove any hydrocarbon vapors before the spent catalyst returns to the catalyst regenerator. The flow of spent catalyst to the regenerator is regulated by a slide valve in the spent catalyst line.

Since the cracking reactions produce some carbonaceous material (referred to as catalyst coke) that deposits on the catalyst and very quickly reduces the catalyst reactivity, the catalyst is regenerated by burning off the deposited coke with air blown into the regenerator. The regenerator operates at a temperature of about 715 °C and a pressure of about 2.41 bar, hence the regenerator operates at about 0.7 bar higher pressure than the reactor. The combustion of the coke is exothermic and it produces a large amount of heat that is partially absorbed by the regenerated catalyst and provides the heat required for the vaporization of the feedstock and the endothermic cracking reactions that take place in the catalyst riser. For that reason, FCC units are often referred to as being 'heat balanced'.

The hot catalyst (at about 715 °C) leaving the regenerator flows into a catalyst withdrawal well where any entrained combustion flue gases are allowed to escape and flow back into the upper part to the regenerator. The flow of regenerated catalyst to the feedstock injection point below the catalyst riser is regulated by a slide valve in the regenerated catalyst line. The hot flue gas exits the regenerator after passing through multiple sets of two-stage cyclones that remove entrained catalyst from the flue gas.

The amount of catalyst circulating between the regenerator and the reactor amounts to about 5 kg per kg of feedstock, which is equivalent to about 4.66 kg per litre of feedstock.[1][7] Thus, an FCC unit processing 75,000 barrels per day (11,900 m3/d) will circulate about 55,900 tonnes per day of catalyst.

Figure 1: A schematic flow diagram of a Fluid Catalytic Cracking unit as used in petroleum refineries

https://en.wikipedia.org/wiki/Fluid_catalytic_cracking#Reactor_and_regenerator



Monday, August 9, 2021

08-08-2021-2244 - Plasma Physics

Monday, September 27, 2021

09-27-2021-1730 - Atomic Weapons Program, Chlorine-Iron Fire, List of Unusual Deaths, Radiochemistry, Natural Gas, Yield of a nuclear weapon, chalcogen, Windscale fire, modulated neutron initiator, metalloid, post-transition element, metals close to the border between metals and non metals, etc..

Monday, September 20, 2021

No comments:

Post a Comment