Blog Archive

Wednesday, September 29, 2021

09-28-2021-1814 - symplectic spinor bundle field

disco ball - Buck Hill Brewery and Restaurant

 In differential geometry, given a metaplectic structure  on a -dimensional symplectic manifold  the symplectic spinor bundleis the Hilbert space bundle  associated to the metaplectic structure via the metaplectic representation. The metaplectic representation of the metaplectic group — the two-fold covering of the symplectic group — gives rise to an infinite rank vector bundle; this is the symplectic spinor construction due to Bertram Kostant.[1]

A section of the symplectic spinor bundle  is called a symplectic spinor field.

Formal definition[edit]

Let  be a metaplectic structure on a symplectic manifold  that is, an equivariant lift of the symplectic frame bundle  with respect to the double covering 

The symplectic spinor bundle  is defined [2] to be the Hilbert space bundle

associated to the metaplectic structure  via the metaplectic representation  also called the Segal–Shale–Weil [3][4][5]representation of  Here, the notation  denotes the group of unitary operators acting on a Hilbert space 

The Segal–Shale–Weil representation [6] is an infinite dimensional unitary representation of the metaplectic group  on the space of all complex valued square Lebesgue integrable square-integrable functions  Because of the infinite dimension, the Segal–Shale–Weil representation is not so easy to handle.

https://en.wikipedia.org/wiki/Symplectic_spinor_bundle

No comments:

Post a Comment