Blog Archive

Thursday, September 23, 2021

09-23-2021-0616 - d'Alembert's formula & Bessel functions

 

In mathematics, and specifically partial differential equations (PDEs), d'Alembert's formula is the general solution to the one-dimensional wave equation  (where subscript indices indicate partial differentiation, using the d'Alembert operator, the PDE becomes: ).

The solution depends on the initial conditions at   and . It consists of separate terms for the initial conditions  and  

It is named after the mathematician Jean le Rond d'Alembert, who derived it in 1747 as a solution to the problem of a vibrating string.[1]

https://en.wikipedia.org/wiki/D%27Alembert%27s_formula


Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

for an arbitrary complex number Î±, the order of the Bessel function. Although Î± and Î± produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of Î±.

The most important cases are when Î± is an integer or half-integer. Bessel functions for integer Î± are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinatesSpherical Bessel functions with half-integer Î± are obtained when the Helmholtz equation is solved in spherical coordinates.

Bessel functions are the radial part of the modes of vibration of a circular drum.

https://en.wikipedia.org/wiki/Bessel_function


https://en.wikipedia.org/wiki/Spherical_harmonics

https://en.wikipedia.org/wiki/Inhomogeneous_electromagnetic_wave_equation

https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator

https://en.wikipedia.org/wiki/Zonal_spherical_harmonics

https://en.wikipedia.org/wiki/Spin-weighted_spherical_harmonics

https://en.wikipedia.org/wiki/Ladder_operator

https://en.wikipedia.org/wiki/Creation_and_annihilation_operators



No comments:

Post a Comment