Blog Archive

Thursday, September 23, 2021

09-22-2021-1940 - axial compressor radial engine jet Centrifugal compressors 1929 1920 1800s etc.

 An axial compressor is a gas compressor that can continuously pressurize gases. It is a rotating, airfoil-based compressor in which the gas or working fluid principally flows parallel to the axis of rotation, or axially. This differs from other rotating compressors such as centrifugal compressor, axi-centrifugal compressors and mixed-flow compressors where the fluid flow will include a "radial component" through the compressor. The energy level of the fluid increases as it flows through the compressor due to the action of the rotor blades which exert a torque on the fluid. The stationary blades slow the fluid, converting the circumferential component of flow into pressure. Compressors are typically driven by an electric motor or a steam or a gas turbine.[1]

Axial flow compressors produce a continuous flow of compressed gas, and have the benefits of high efficiency and large mass flow rate, particularly in relation to their size and cross-section. They do, however, require several rows of airfoils to achieve a large pressure rise, making them complex and expensive relative to other designs (e.g. centrifugal compressors).

Axial compressors are integral to the design of large gas turbines such as jet engines, high speed ship engines, and small scale power stations. They are also used in industrial applications such as large volume air separation plants, blast furnace air, fluid catalytic cracking air, and propane dehydrogenation. Due to high performance, high reliability and flexible operation during the flight envelope, they are also used in aerospace rocket engines, as fuel pumps and in other critical high volume applications.[2]

Axial flow compressors produce a continuous flow of compressed gas, and have the benefits of high efficiency and large mass flow rate, particularly in relation to their size and cross-section. They do, however, require several rows of airfoils to achieve a large pressure rise, making them complex and expensive relative to other designs (e.g. centrifugal compressors).

Axial compressors are integral to the design of large gas turbines such as jet engines, high speed ship engines, and small scale power stations. They are also used in industrial applications such as large volume air separation plants, blast furnace air, fluid catalytic cracking air, and propane dehydrogenation. Due to high performance, high reliability and flexible operation during the flight envelope, they are also used in aerospace rocket engines, as fuel pumps and in other critical high volume applications.[2]

Typical applicationType of flowPressure ratio per stageEfficiency per stage[2]
IndustrialSubsonic1.05–1.288–92%
AerospaceTransonic1.15–1.680–85%
ResearchSupersonic1.8–2.275–85%

Description[edit]

The compressor in a Pratt & Whitney TF30 turbofan engine.

Axial compressors consist of rotating and stationary components. A shaft drives a central drum which is retained by bearings inside of a stationary tubular casing. Between the drum and the casing are rows of airfoils, each row connected to either the drum or the casing in an alternating manner. A pair of one row of rotating airfoils and the next row of stationary airfoils is called a stage. The rotating airfoils, also known as blades or rotors, accelerate the fluid in both the axial and circumferential directions. The stationary airfoils, also known as vanes or stators, convert the increased kinetic energy into static pressure through diffusion and redirect the flow direction of the fluid to prepare it for the rotor blades of the next stage.[3]The cross-sectional area between rotor drum and casing is reduced in the flow direction to maintain an optimum Mach number axial velocity as the fluid is compressed.

 

---------


Real work on axial-flow engines started in the late 1930s, in several efforts that all started at about the same time. In England, Hayne Constant reached an agreement with the steam turbine company Metropolitan-Vickers (Metrovick) in 1937, starting their turboprop effort based on the Griffith design in 1938. In 1940, after the successful run of Whittle's centrifugal-flow design, their effort was re-designed as a pure jet, the Metrovick F.2. In Germany, von Ohain had produced several working centrifugal engines, some of which had flown including the world's first jet aircraft (He 178), but development efforts had moved on to Junkers (Jumo 004) and BMW(BMW 003), which used axial-flow designs in the world's first jet fighter (Messerschmitt Me 262) and jet bomber (Arado Ar 234). In the United States, both Lockheedand General Electric were awarded contracts in 1941 to develop axial-flow engines, the former a pure jet, the latter a turboprop. Northrop also started their own project to develop a turboprop, which the US Navy eventually contracted in 1943. Westinghouse also entered the race in 1942, their project proving to be the only successful one of the US efforts, later becoming the J30.

As Griffith had originally noted in 1929, the large frontal size of the centrifugal compressor caused it to have higher drag than the narrower axial-flow type. Additionally the axial-flow design could improve its compression ratio simply by adding additional stages and making the engine slightly longer. In the centrifugal-flow design the compressor itself had to be larger in diameter, which was much more difficult to fit properly into a thin and aerodynamic aircraft fuselage (although not dissimilar to the profile of radial engines already in widespread use). On the other hand, centrifugal-flow designs remained much less complex (the major reason they "won" in the race to flying examples) and therefore have a role in places where size and streamlining are not so important.


Axial-flow jet engines[edit]

Low-pressure axial compressor scheme of the Olympus BOl.1 turbojet.

In the jet engine application, the compressor faces a wide variety of operating conditions. On the ground at takeoff the inlet pressure is high, inlet speed zero, and the compressor spun at a variety of speeds as the power is applied. Once in flight the inlet pressure drops, but the inlet speed increases (due to the forward motion of the aircraft) to recover some of this pressure, and the compressor tends to run at a single speed for long periods of time.

There is simply no "perfect" compressor for this wide range of operating conditions. Fixed geometry compressors, like those used on early jet engines, are limited to a design pressure ratio of about 4 or 5:1. As with any heat enginefuel efficiency is strongly related to the compression ratio, so there is very strong financial need to improve the compressor stages beyond these sorts of ratios.

Additionally the compressor may stall if the inlet conditions change abruptly, a common problem on early engines. In some cases, if the stall occurs near the front of the engine, all of the stages from that point on will stop compressing the air. In this situation the energy required to run the compressor drops suddenly, and the remaining hot air in the rear of the engine allows the turbine to speed up[citation needed] the whole engine dramatically. This condition, known as surging, was a major problem on early engines and often led to the turbine or compressor breaking and shedding blades.

For all of these reasons, axial compressors on modern jet engines are considerably more complex than those on earlier designs.

Spools[edit]

All compressors have an optimum point relating rotational speed and pressure, with higher compressions requiring higher speeds. Early engines were designed for simplicity, and used a single large compressor spinning at a single speed. Later designs added a second turbine and divided the compressor into low-pressure and high-pressure sections, the latter spinning faster. This two-spool design, pioneered on the Bristol Olympus, resulted in increased efficiency. Further increases in efficiency may be realised by adding a third spool, but in practice the added complexity increases maintenance costs to the point of negating any economic benefit. That said, there are several three-spool engines in use, perhaps the most famous being the Rolls-Royce RB211, used on a wide variety of commercial aircraft.

Bleed air, variable stators[edit]

As an aircraft changes speed or altitude, the pressure of the air at the inlet to the compressor will vary. In order to "tune" the compressor for these changing conditions, designs starting in the 1950s would "bleed" air out of the middle of the compressor in order to avoid trying to compress too much air in the final stages. This was also used to help start the engine, allowing it to be spun up without compressing much air by bleeding off as much as possible. Bleed systems were already commonly used anyway, to provide airflow into the turbine stage where it was used to cool the turbine blades, as well as provide pressurized air for the air conditioning systems inside the aircraft.

A more advanced design, the variable stator, used blades that can be individually rotated around their axis, as opposed to the power axis of the engine. For startup they are rotated to "closed", reducing compression, and then are rotated back into the airflow as the external conditions require. The General Electric J79 was the first major example of a variable stator design, and today it is a common feature of most military engines.

Closing the variable stators progressively, as compressor speed falls, reduces the slope of the surge (or stall) line on the operating characteristic (or map), improving the surge margin of the installed unit. By incorporating variable stators in the first five stages, General Electric Aircraft Engines has developed a ten-stage axial compressor capable of operating at a 23:1 design pressure ratio.

Design notes[edit]

Energy exchange between rotor and fluid[edit]

The relative motion of the blades to the fluid adds velocity or pressure or both to the fluid as it passes through the rotor. The fluid velocity is increased through the rotor, and the stator converts kinetic energy to pressure energy. Some diffusion also occurs in the rotor in most practical designs.

The increase in velocity of the fluid is primarily in the tangential direction (swirl) and the stator removes this angular momentum.

The pressure rise results in a stagnation temperature rise. For a given geometry the temperature rise depends on the square of the tangential Mach number of the rotor row. Current turbofan engines have fans that operate at Mach 1.7 or more, and require significant containment and noise suppression structures to reduce blade loss damage and noise.

Compressor maps[edit]

A map shows the performance of a compressor and allows determination of optimal operating conditions. It shows the mass flow along the horizontal axis, typically as a percentage of the design mass flow rate, or in actual units. The pressure rise is indicated on the vertical axis as a ratio between inlet and exit stagnation pressures.

A surge or stall line identifies the boundary to the left of which the compressor performance rapidly degrades and identifies the maximum pressure ratio that can be achieved for a given mass flow. Contours of efficiency are drawn as well as performance lines for operation at particular rotational speeds.

Compression stability[edit]

Operating efficiency is highest close to the stall line. If the downstream pressure is increased beyond the maximum possible the compressor will stall and become unstable.

Typically the instability will be at the Helmholtz frequency of the system, taking the downstream plenum into account.

See also[edit]


https://en.wikipedia.org/wiki/Axial_compressor


Centrifugal compressors, sometimes called radial compressors, are a sub-class of dynamic axisymmetric work-absorbing turbomachinery.[1]

They achieve a pressure rise by adding kinetic energy/velocity to a continuous flow of fluid through the rotor or impeller. This kinetic energy is then converted to an increase in potential energy/static pressure by slowing the flow through a diffuser. The pressure rise in the impeller is in most cases almost equal to the rise in the diffuser.

Centrifugal compressor works like impeller centrifugal pump

Theory of operation[edit]

In the case where flow passes through a straight pipe to enter a centrifugal compressor the flow is axial, uniform and has no vorticity, i.e. swirling motion. As the flow passes through the centrifugal impeller, the impeller forces the flow to spin faster as it gets further from the rotational axis. According to a form of Euler's fluid dynamics equation, known as the pump and turbine equation, the energy input to the fluid is proportional to the flow's local spinning velocity multiplied by the local impeller tangential velocity.

In many cases, the flow leaving the centrifugal impeller is travelling near the speed of sound. It then flows through a stationary compressor causing it to decelerate. The stationary compressor is ducting with increasing flow-area where energy transformation takes place. If the flow has to be turned in a rearward direction to enter the next part of the machine, e.g. another impeller or a combustor, flow losses can be reduced by directing the flow with stationary turning vanes or individual turning pipes (pipe diffusers). As described in Bernoulli's principle, the reduction in velocity causes the pressure to rise.[1]

Historical contributions, the pioneers[edit]

Over the past 100 years, applied scientists including Stodola (1903, 1927–1945),[2] Pfleiderer (1952),[3] Hawthorne (1964),[4] Shepard (1956),[1] Lakshminarayana (1996),[5] and Japikse (many texts including citations),[6][7][8][9] have educated young engineers in the fundamentals of turbomachinery. These understandings apply to all dynamic, continuous-flow, axisymmetric pumps, fans, blowers, and compressors in axial, mixed-flow and radial/centrifugal configurations.

This relationship is the reason advances in turbines and axial compressors often find their way into other turbomachinery including centrifugal compressors. Figures 1.1 and 1.2[10][11] illustrate the domain of turbomachinery with labels showing centrifugal compressors. Improvements in centrifugal compressors have not been achieved through large discoveries. Rather, improvements have been achieved through understanding and applying incremental pieces of knowledge discovered by many individuals.

Figure 1.1 represents the aero-thermo domain of turbomachinery. The horizontal axis represents the energy equation derivable from The first law of thermodynamics.[1][11] The vertical axis, which can be characterized by Mach Number, represents the range of fluid compressibility (or elasticity).[1][11] The Z-axis, which can be characterized by Reynolds number, represents the range of fluid viscosities (or stickiness).[1][11] Mathematicians and physicists who established the foundations of this aero-thermo domain include:[12][13] Isaac NewtonDaniel BernoulliLeonhard EulerClaude-Louis NavierGeorge StokesErnst MachNikolay Yegorovich ZhukovskyMartin KuttaLudwig PrandtlTheodore von KármánPaul Richard Heinrich Blasius, and Henri Coandă.

Figure 1.2 represents the physical or mechanical domain of turbomachinery. Again, the horizontal axis represents the energy equation with turbines generating power to the left and compressors absorbing power to the right.[1][11] Within the physical domain the vertical axis differentiates between high speeds and low speeds depending upon the turbomachinery application.[1][11] The Z-axis differentiates between axial-flow geometry and radial-flow geometry within the physical domain of turbomachinery.[1][11] It is implied that mixed-flow turbomachinery lie between axial and radial.[1][11] Key contributors of technical achievements that pushed the practical application of turbomachinery forward include:[12][13] Denis Papin,[14] Kernelien Le Demour, Daniel Gabriel Fahrenheit, John Smeaton, Dr. A. C. E. Rateau,[15] John BarberAlexander Sablukov, Sir Charles Algernon ParsonsÆgidius EllingSanford Alexander MossWillis CarrierAdolf BusemannHermann SchlichtingFrank Whittle and Hans von Ohain.

Partial timeline[edit]

<1689Early turbomachinesPumps, blowers, fans
1689Denis PapinOrigin of the centrifugal compressor
1754Leonhard EulerEuler's "Pump & Turbine" equation
1791John BarberFirst gas turbine patent
1899A. C. E. RateauFirst practical centrifugal compressor
1927Aurel Boleslav StodolaFormalized "slip factor"
1928Adolf BusemannDerived "slip factor"
1937Frank Whittle and Hans von Ohain, independentlyFirst gas turbine using centrifugal compressor
>1970Modern turbomachines3D-CFD, rocket turbo-pumps, heart assist pumps, turbocharged fuel cells

https://en.wikipedia.org/wiki/Centrifugal_compressor


Cavitation is a phenomenon in which the static pressure of a liquid reduces to below the liquid's vapour pressure, leading to the formation of small vapor-filled cavities in the liquid. When subjected to higher pressure, these cavities, called "bubbles" or "voids", collapse and can generate shock waves that may damage machinery. These shock waves are strong when they are very close to the imploded bubble, but rapidly weaken as they propagate away from the implosion.

Cavitation is a significant cause of wear in some engineering contexts. Collapsing voids that implode near to a metal surface cause cyclic stress through repeated implosion. This results in surface fatigue of the metal causing a type of wear also called "cavitation". The most common examples of this kind of wear are to pump impellers, and bends where a sudden change in the direction of liquid occurs. Cavitation is usually divided into two classes of behavior: inertial (or transient) cavitation and non-inertial cavitation.

The process in which a void or bubble in a liquid rapidly collapses, producing a shock wave, is called inertial cavitation. Inertial cavitation occurs in nature in the strikes of mantis shrimps and pistol shrimps, as well as in the vascular tissues of plants. In man-made objects, it can occur in control valvespumpspropellers and impellers.

Non-inertial cavitation is the process in which a bubble in a fluid is forced to oscillate in size or shape due to some form of energy input, such as an acoustic field. Such cavitation is often employed in ultrasonic cleaning baths and can also be observed in pumps, propellers, etc.

Since the shock waves formed by collapse of the voids are strong enough to cause significant damage to parts, cavitation is typically an undesirable phenomenon in machinery (although desirable if intentionally used, for example, to sterilize contaminated surgical instruments, break down pollutants in water purification systems, emulsify tissue for cataract surgery or kidney stone lithotripsy, or homogenize fluids). It is very often specifically avoided in the design of machines such as turbines or propellers, and eliminating cavitation is a major field in the study of fluid dynamics. However, it is sometimes useful and does not cause damage when the bubbles collapse away from machinery, such as in supercavitation.

Physics[edit]

Inertial cavitation was first observed in the late 19th century, considering the collapse of a spherical void within a liquid. When a volume of liquid is subjected to a sufficiently low pressure, it may rupture and form a cavity. This phenomenon is coined cavitation inception and may occur behind the blade of a rapidly rotating propeller or on any surface vibrating in the liquid with sufficient amplitude and acceleration. A fast-flowing river can cause cavitation on rock surfaces, particularly when there is a drop-off, such as on a waterfall.

Other ways of generating cavitation voids involve the local deposition of energy, such as an intense focused laser pulse (optic cavitation) or with an electrical discharge through a spark. Vapor gases evaporate into the cavity from the surrounding medium; thus, the cavity is not a vacuum at all, but rather a low-pressure vapor (gas) bubble. Once the conditions which caused the bubble to form are no longer present, such as when the bubble moves downstream, the surrounding liquid begins to implode due its higher pressure, building up inertia as it moves inward. As the bubble finally collapses, the inward inertia of the surrounding liquid causes a sharp increase of pressure and temperature of the vapor within. The bubble eventually collapses to a minute fraction of its original size, at which point the gas within dissipates into the surrounding liquid via a rather violent mechanism which releases a significant amount of energy in the form of an acoustic shock wave and as visible light. At the point of total collapse, the temperature of the vapor within the bubble may be several thousand kelvin, and the pressure several hundred atmospheres.[1]

Inertial cavitation can also occur in the presence of an acoustic field. Microscopic gas bubbles that are generally present in a liquid will be forced to oscillate due to an applied acoustic field. If the acoustic intensity is sufficiently high, the bubbles will first grow in size and then rapidly collapse. Hence, inertial cavitation can occur even if the rarefaction in the liquid is insufficient for a Rayleigh-like void to occur. High-power ultrasonics usually utilize the inertial cavitation of microscopic vacuum bubbles for treatment of surfaces, liquids, and slurries.

The physical process of cavitation inception is similar to boiling. The major difference between the two is the thermodynamic paths that precede the formation of the vapor. Boiling occurs when the local temperature of the liquid reaches the saturation temperature, and further heat is supplied to allow the liquid to sufficiently phase change into a gas. Cavitation inception occurs when the local pressure falls sufficiently far below the saturated vapor pressure, a value given by the tensile strength of the liquid at a certain temperature.[2]

In order for cavitation inception to occur, the cavitation "bubbles" generally need a surface on which they can nucleate. This surface can be provided by the sides of a container, by impurities in the liquid, or by small undissolved microbubbles within the liquid. It is generally accepted that hydrophobic surfaces stabilize small bubbles. These pre-existing bubbles start to grow unbounded when they are exposed to a pressure below the threshold pressure, termed Blake's threshold.

The vapor pressure here differs from the meteorological definition of vapor pressure, which describes the partial pressure of water in the atmosphere at some value less than 100% saturation. Vapor pressure as relating to cavitation refers to the vapor pressure in equilibrium conditions and can therefore be more accurately defined as the equilibrium (or saturated) vapor pressure.

Non-inertial cavitation is the process in which small bubbles in a liquid are forced to oscillate in the presence of an acoustic field, when the intensity of the acoustic field is insufficient to cause total bubble collapse. This form of cavitation causes significantly less erosion than inertial cavitation, and is often used for the cleaning of delicate materials, such as silicon wafers.

https://en.wikipedia.org/wiki/Cavitation


Rarefaction is the reduction of an item's density, the opposite of compression.[1] Like compression, which can travel in waves (sound waves, for instance), rarefaction waves also exist in nature. A common rarefaction wave is the area of low relative pressure following a shock wave (see picture).

Rarefaction waves expand with time (much like sea waves spread out as they reach a beach); in most cases rarefaction waves keep the same overall profile ('shape') at all times throughout the wave's movement: it is a self-similar expansion. Each part of the wave travels at the local speed of sound, in the local medium. This expansion behaviour is in contrast to the behaviour of pressure increases, which gets narrower with time, until they steepen into shock waves.

An example of rarefaction is also as a phase in a sound wave or phonon. Half of a sound wave is made up of the compression of the medium, and the other half is the decompression or rarefaction of the medium.

https://en.wikipedia.org/wiki/Rarefaction


No comments:

Post a Comment